Nucleon Structure with clover-Wilson Fermions

LHP proposal *M.Engelhardt (PI), A.Gambhir, J.Green, J.Negele, A.Pochinsky, S.Syritsyn(co-PI),*

USQCD All-Hands Meeting, Jefferson Lab Apr 28-30, 2017

Nucleon Structure with Isotropic Wilson Lattices

Goal : Study Flavor-Dependent Nucleon Structure at High Momentum with Stat.signal Improvement and Inclusion of Disconnected Quarks

- DISCO: disconnected diagrams with Hierarchical Probing and Deflation [A.Gambhir, K.Orginos] with all lattice coordinate/momenta
- **CONN3PT** : Nucleon form factors with high momentum transfer with boosted nucleon operators
- **TMD** : Transverse-momentum dependent PDFs with boosted high-momentum initial/final states

TMD Program

M.Engelhardt(PI), LHPc

Nucleon Structure with Wilson Clover Fermions

TMD Program

Nucleon Structure with Wilson Clover Fermions

High-Q² Nucleon Form Factors in Experiments

High-Momentum Nucleon States and Form Factors

Nucleon operator on a lattice with Gaussian-"smeared" quarks does not couple well to moving hadron

$$N_{\text{lat}}(x) = \left(\mathcal{S}\,u\right)_x^a \left[\left(\mathcal{S}\,d\right)_x^b C\gamma_5 \left(\mathcal{S}\,u\right)_x^c\right] \epsilon^{abc}$$
$$\mathcal{S}_{\text{at-rest}} = \exp\left[-\frac{w^2}{4}(i\vec{\nabla})^2\right] \sim \exp\left(-\frac{w^2\vec{k}_{\text{lat}}^2}{4}\right)$$

reduced overlap with boosted WF

Optimize smearing for boosted nucleon states [orig. B.Musch]

$$\mathcal{S}_{\text{boosted}} = \exp\left[-\frac{w^2}{4}(i\vec{\nabla} - \vec{k}_0)^2\right]$$
$$\sim \exp\left(-\frac{w^2(\vec{k}_{\text{lat}} - \vec{k}_0)^2}{4}\right)$$

RQCD results for spectrum [G. Bali et al, arXiv:1602.05525]

M.Engelhardt(PI), LHPc

This Proposal (**CONN3PT**): continued study of nucleon structure with boosted sources m_{π} =320,190 MeV with a=0.114, a=0.081 fm In Breit frame:

periodic BC
 antiperiodic (twisting)
 Q²_{opt} = (6 k_{min})² = 4.2...8.2 GeV²
 Q²_{opt} = (6 k_{min})² = 1.1...2.1 GeV²
 + Include disconnected diagrams (DISCO)
 Motivation : JLab @12 GeV will measure proton,

 $(\mathcal{S}\psi)$

0.5

0.5 -1 1.5 x,y

 κ_x

 $\left(\right)$

 k_y

 \vec{k}_0

neutron form factors up to $Q^2 = 12..18 \text{ GeV}^2$

Signal Gain : Traditional vs. Boosted Smearing

Nucleon Effective Energy: m_{π} = 320 MeV, a=0.081 fm, 32³x64

each quark is boosted with the same k=[0 0 1]

w=5.55 (N=45) chosen for preliminary structure study

[SNS, Lattice 2016]

Q^2 Dependence of F_1^u and F_1^d

expect F₁(Q²)~ Q⁴ scaling [Lepage, Brodsky (1979)]
 Both form factors overshoot experiment (x3-4)

[SNS, Lattice 2016]

M.Engelhardt(PI), LHPc

Nucleon Structure with Wilson Clover Fermions

Q^2 Dependence of F_1^u and F_1^d

Q^2F_2/F_1 for Proton

Qualitative behavior of F1u, F1d agrees with phenomenology

Q2F2/F1, Comparison to pQCD scaling

Qualitative behavior of F1u, F1d agrees with phenomenology

G_{Ep}/**G**_{Mp} for Proton

Need to evaluate disconnected diagrams and operator improvement term

GEp/GMp

Disconnected Contributions to F1, F2

- Ratio of disconnected to connected(U) contributions
- Preliminary analysis (plateau averages), a=0.081 fm ensemble

Efficient Calculation of Disconnected Diagrams

Hierarchical probing [K.Orginos, A.Stathopoulos, '13]: In sum over 2^{dk+1} vectors (d=3), dist(x,y) $\leq 2^{k}$ terms cancel exactly: $1 \leq \sum_{i} |x_{a} - y_{a}| \leq 2^{k}$: $\frac{1}{N} \sum_{i}^{N} z_{i}(x) z_{i}(y)^{\dagger} \equiv 0$ $z_{i} \longrightarrow z_{i} \odot \xi$, $\xi(x) = \text{random } Z_{2}\text{-vector}$

• reduce variance by treating low modes of $(D^{\dagger}D)$ exactly [K.Orginos, A.Gambhir]

- Wide range of momenta is required for (1) form factors;
 (2) RI-MOM renormalization;
 ⇒ save all momenta / coordinates
- Highly reusable data : hadron structure, π - π scattering \Rightarrow must be preserved&shared similarly to gauge configurations

Disconnected Vector Form Factors

Comparison to HAPPEX, G0, A4 data [PRL108:102001(2012)]

Disconnected Axial Form Factors

Up/down/strange axial current mixing

Next: extend to quark / gluon energy-momentum mixing

M.Engelhardt(PI), LHPc

Nucleon Structure with Wilson Clover Fermions

Total Request

- [DISCO] disconnected quark loops with HP and deflation, up to one link insertions, all momenta, preserve & share similarly to gauge configurations
- [CONN3PT] form factors at high momentum transfer with control of exc.states
- [TMD] TMD and PDF contractions for high-momentum nucleon in- & out-states

	CI3 : 32 ³ x96 <i>m</i> π=320 MeV a=0.114 fm	D5 : 32 ³ x64 <i>m</i> π=320 MeV a=0.080 fm	D6 : 48 ³ x96 <i>m</i> π=170 MeV a=0.090 fm	D7 : 64 ³ x128 <i>m</i> π=170 MeV a=0.090 fm	REQUEST [Jpsich]
DISCO	200c * 512 v.	200c * 512 v.	200c * 512 v.	50c * 5 2v.	33.5M [GPU]
CONN3PT	25,600 samp.	19,200 samp.	25,600 samp.	24,000 samp.	32.6M [GPU]
TMD(contr.)		14,400 samp.			12.0M [CPU]
	то		77.3M		

And now for something completely different...

[Monthy Python]

Nucleon EDMs, form factors, and proton decay amplitudes using domain wall fermions

RBC+LHP proposal Yasumichi Aoki, Tom Blum, Taku Izubuchi, Chulwoo Jung, Christoph Lehner, Hiroshi Ohki, Eigo Shintani, Amarjit Soni, Sergey Syritsyn (PI)

> USQCD All-Hands Meeting, Jefferson Lab Apr 28-30, 2017

Electric Dipole Moments of Nucleons

Motivations to search for new CP-odd interactions

- Evidence for SM Extensions
- Baryogenesis Requirement
- Strong CP problem (θ_{QCD})

Role of Lattice QCD : connect quark/gluon-level (effective) operators to hadron/nuclei matrix elements and interactions

$$\mathcal{L}_{eff} = \sum_{n} \frac{c_n}{\Lambda^{d_n - 4}} \mathcal{O}_n^{(d_n)}$$

$$\begin{cases} \mathcal{L}^{(4)} = \underbrace{\theta_{32\pi^2}}_{32\pi^2} G \tilde{G} \\ \mathcal{L}^{("6")} = \sum_{q} \left[d_q \, \bar{q} (F \cdot \sigma) \gamma_5 q + \underbrace{\tilde{d}_q} \bar{q} (G \cdot \sigma) \gamma_5 q \right] \text{ Quark (chromo-)EDM} \\ \dots & (3\text{-gluon, 4-quark, etc}) \end{cases}$$

Experimental Outlook: Neutron EDM

	10 ⁻²⁸ e cm
CURRENT LIMIT	<300
Spallation Source @ORNL	< 5
Ultracold Neutrons @LANL	~30
PSI EDM	<50 (I), <5 (II)
ILL PNPI	<10
Munich FRMII	< 5
RCMP TRIUMF	<50 (I), <5 (II)
JPARC	< 5
Standard Model (CKM)	< 0.001

nEDM sensitivity :

- 1–2 years : next best limit
- 3–4 years : x10 improvement
- 7–9 years : x100 improvement

Experimental Outlook: Nuclei, Protons, etc

²²⁵Ra : rigid octupole deformation (parity partner at 55 keV)
 + strong enhancement of P,T-odd πNN coupling in NN potential

 connection to CPv parameters (theta, cEDM, ...) depends on ChPT and nuclear models

Protons and light nuclei (d, t, h) in storage rings :
 + potential for stat. sensitivity |d_p|≤10⁻²⁹ e·cm
 ++ potential to disentangle different sources of CPv
 – not clear if sys. uncertainties may be controlled

θ_{QCD}-induced Nucleon EDM

[E.Shintani, T.Blum, T.Izubuchi, A.Soni, PRD93, 094503(2015)]

• Phenomenology: $|d_n| \simeq \theta_{QCD} \times (\text{few } 10^{-3} e \text{ fm}) \implies |\theta_{QCD}| \lesssim 1.5 \times 10^{-10}$

• Lattice : $|d_n| \simeq \theta_{QCD} \times (\text{few } 10^{-2} \text{ e fm}) \implies \text{tighter constraint on } \theta_{QCD}$?

θ_{QCD}-induced Nucleon EDM

[E.Shintani, T.Blum, T.Izubuchi, A.Soni, PRD93, 094503(2015)]

• Phenomenology: $|d_n| \simeq \theta_{QCD} \times (\text{few } 10^{-3} e \text{ fm}) \implies |\theta_{QCD}| \lesssim 1.5 \times 10^{-10}$

• Lattice : $|d_n| \simeq \theta_{QCD} \times (\text{few } 10^{-2} \text{ e fm}) \implies \text{tighter constraint on } \theta_{QCD}$?

Unfortunately, there is a problem: unaccounted-for mixing between electric and magnetic moments

S.Syritsyn(PI), LHPc+RBC

Nucleon "Parity Mixing" on a Lattice

Lattice nucleon operator $N = u \left[u^T C \gamma_5 d \right]$

Ground state in CPv vacuum $\langle \operatorname{vac}|N|p,\sigma \rangle_{\mathcal{GP}} = e^{i\alpha\gamma_5} u_{p,\sigma} = \tilde{u}_{p,\sigma}$ Solutions to $(\partial + m_N e^{-2i\alpha\gamma_5}) \tilde{u}_p = 0$

Nucleon propagator
$$\langle N(t)\bar{N}(0)\rangle_{\mathcal{GP}} = e^{-E_N t}e^{i\alpha\gamma_5}\frac{-ip_{\mathcal{E}}+m_N}{2E_N}e^{i\alpha\gamma_5}$$

 $\sim \frac{-ip_{\mathcal{E}}+m_Ne^{2i\alpha\gamma_5}}{2E_N} = \sum_{\sigma}\tilde{u}_{p,\sigma}\bar{\tilde{u}}_{p,\sigma}$

The mixing phase α has to be calculated and removed by field redefinition Similar issues may appear in EFT (ChPT) calculations

Nucleon "Parity Mixing" : EDM and aMDM

Nucleon-current correlator spin
structure in the **original** works
[S.Aoki et al (2005),]
$$\langle N_{p'} J^{\mu} \bar{N}_{p} \rangle_{CP} \sim \left(\sum_{\sigma'} \tilde{u}_{\sigma'} \bar{\tilde{u}}_{\sigma'} \right)_{p'} \Gamma_{\mathcal{E}}^{\mu} \left(\sum_{\sigma} \tilde{u}_{\sigma} \bar{\tilde{u}}_{\sigma} \right)_{p}$$
$$Vector current vertex in Euclid} \Gamma_{\mathcal{E}}^{\mu} = F_{1} \gamma^{\mu} + (F_{2} + i F_{3} \gamma_{5}) \frac{\sigma^{\mu\nu} (p' - p)_{\nu}}{2m_{N}}$$
$$(electric dipole f.f.)$$
$$(electric dipole f.f.)$$
$$\langle N_{p'} J^{\mu} \bar{N}_{p} \rangle_{CP} \sim \sum_{\sigma',\sigma} \tilde{u}_{p',\sigma'} \left(\bar{u}_{p',\sigma'} \Gamma_{\mathcal{E}}^{\mu} u_{p,\sigma} \right) \bar{\tilde{u}}_{p,\sigma}$$
$$(\vartheta + m_{N}) u_{p} = 0 \quad \Leftrightarrow (1 - \gamma_{4}) u = 0$$

Chiral rotation results in "rotation" in the $F_{2,3}$ plane

structure in the original

... and spurious contributions to anomalous mag.moment $F_2(0)$ electric dipole moment $F_{3}(0)$

With CPv interaction as a perturbation over QCD vacuum

$$e^{i\alpha\gamma_5}\Gamma^{\mu}e^{i\alpha\gamma_5}\leftrightarrow\Gamma^{\mu}$$
$$e^{2i\alpha}("F_2"+i"F_3") = (F_2+iF_3)_{\text{true}}$$

$$\begin{bmatrix} "F_2" &= [\cos(2\alpha)F_2 + \sin(2\alpha)F_3]_{\text{true}} \\ "F_3" &= [\cos(2\alpha)F_3 - \sin(2\alpha)F_2]_{\text{true}} \end{bmatrix}$$

$${}^{``}F_3{}^{"} \approx [F_3]_{\text{true}} - 2\alpha [F_2]_{\text{true}}$$
$${}^{``}d_{n,p}{}^{"} \approx [d_{n,p}]_{\text{true}} - 2\alpha \frac{\kappa_{n,p}}{2m_N}$$

Recent Lattice Results on θ_{QCD} -induced nEDM

Correction is simple: $[F_3]_{true} = "F_3" + 2\alpha F_2$

- [C.Alexandrou *et al* (ETMC), PRD93:074503 (2016] d_n =-0.045(06) *e* fm (~7.5 σ) \rightarrow +0.008(6) *e* fm (1.3 σ) + zero result confirmed by the authors
- [E.Shintani et al, D78:014503 (2008)],

uniform Minkowski-real bg. electric field: **not affected** by the spinor "parity mixing" d_n =-0.040(28) *e* fm (~1.4 σ) at $m_\pi \approx$ 530 MeV; *Precision is insufficient for comparison*

After removing spurious contributions, no significant lattice signal for θ_{QCD} -induced nEDM ! However, the conflicts with phenomenology value and m_q scaling disappears

S.Syritsyn(PI), LHPc+RBC

Energy Shift vs. Form Factors (Neutron)

Agreement between the **new** F₃ formula and the energy shift method

Quark chromo-EDM: Insertions of dim-5 Operators

$$\mathcal{L}^{(5)} = \sum_{q} \tilde{d}_{q} \,\bar{q}(G \cdot \sigma) \gamma_{5} q \qquad \longleftrightarrow \qquad \langle N(y) \,\bar{N}(0) \int d^{4}x \,\bar{q}(G \cdot \sigma) \gamma_{5} q \rangle \\ \langle N(y) \,[\bar{\psi}\gamma^{\mu}\psi]_{z} \,\bar{N}(0) \int d^{4}x \,\bar{q}(G \cdot \sigma) \gamma_{5} q \rangle$$

First calculations : [T.Bhattacharya et al(LANL, LATTICE'15,'16]

So far: Only quark-connected insertions

Future (hopefully): Single- and double-disconnected diagrams (contribute to isosinglet cEDM, mix with θ-term)

EDM and Pdecay with Domain Wall Fermions

Current Results on cEDM-induced nEDM

connected-only

bare cEDM operators on a lattice (no renormalization/mixing subtraction) statistics = 10,500 samples on 24³x64 m_{π} = 330 MeV DW ensemble

Request

- [EDM] high-statistics calculation of theta- and cEDM-induced p,nEDM
- [FormFac] exploration of required stat. for EDM at the physical point
- [Pdecay] opportunistic calculation to reuse (relatively expensive) chirally symmetric light-quark propagators

	DSDR 32 ³ x64 <i>m</i> π=250 MeV a=0.142 fm	DSDR 32 ³ x64 <i>m</i> π=170 MeV a=0.142 fm	DSDR 32 ³ x64 <i>m</i> π=140 MeV a=0.200 fm	ID 64 ³ x128 <i>m</i> π=140 MeV a=0.090 fm	REQUEST [Jpsich]
EDM	9,600 samp.	9,600 samp.	6,400 samp.		43.3M [CPU]
FORMFAC				6,400 samp.	16.1M [CPU]
PDECAY				6,400 samp.	6.1M [CPU]
	TO		70.IM		

- At present: continue exploration on 24³x64 330 MeV
- Reuse eigenvectors from the HVP/HLbL project

S.Syritsyn(PI), LHPc+RBC

EDM and Pdecay with Domain Wall Fermions

Current theta-EDM estimate

• 24^3 x64 *m* π =330 MeV, 3,200 samples

 $|F_3| \lesssim 0.1 \quad \Rightarrow \quad |d_n|/\theta \lesssim 0.01 \, e \cdot \mathrm{fm}$

Nucleon "Parity Mixing" : EDM and aMDM

Correct identification of $F_{2,3}$ in nucleon ME based on parity of the vector current matrix element: $F_{1,2}$ P,T-even, F_3 P,T-odd [S.Aoki, SNS, *et al* (2017) arXiv:1701.07792]

$$\langle N_{p'} | \bar{q} \gamma^{\mu} q | N_{p} \rangle_{\mathcal{CP}} = \bar{u}_{p'} \left[F_{1} \gamma^{\mu} + (F_{2} + iF_{3} \gamma_{5}) \frac{i \sigma^{\mu\nu} (p' - p)_{\nu}}{2m_{N}} \right] u_{p}$$

$$\text{with} \quad u_{\vec{p},\sigma} \to u_{-\vec{p},\sigma} = \gamma_{4} u_{\vec{p},\sigma} \quad \Leftrightarrow \quad (i \not p + m) u_{p,\sigma} = 0$$

poles of the Dirac equation with CPv nucleon mass in bg. electric & magnetic fields

Numerical test: compare EDFF to mass shift in uniform bg. electric field

Full flux through the "side" of the periodic box = $q\Phi = 2\pi \cdot n$ Constant Electric field has to be quantized, $\mathcal{E}_{\min} = \frac{1}{|q_d|} \frac{2\pi}{L_r L_t}$

S.Syritsyn(PI), LHPc+RBC