SPC Summary on Nucleon Matrix Elements

- Cold Nuclear Physics
 - Nucleon Matrix Elements
 - Parton Distribution Function and Moments
 - Hadron Spectroscopy
 - Hadron Interactions and Nuclei
- Experimental facilities
 - Present: JLab 12 GeV, RHIC, ATLAS, Fermilab
 - •Future: FRIB, EIC

Keh-Fei Liu All Hands Meeting JLab, Apr. 28-29, 2017

Request of Computer Time

PI	Title	CPU Request (J/Ψ hrs)	GPU request (C2050 hrs)
Bhattacharya	Taming quark chromo EDM contribution to the neutron EDM	43 M (Fermilab)	
Engelhardt	Nucleon quark-gluon structure with Clover-Wilson fermion	12 M	806 K
Kronfeld	The Nucleon Axial-Vector Form Factor at the Physical Point with the HISQ Ensembles	51 M (Fermilab)	
Liang	Neutron electric dipole moment from lattice QCD with θ term	12 M (12s) 32 M (KNL)	
Syritsyn	Calculation of nucleon axial form factors, proton decay amplitudes, and nucleon EDMs induced by QCD theta term and quark chromo-EDM using domain wall fermions	71 M (cluster)	
Yang	Quark Spin from Anomalous Ward Identify and Conserved Axial-vector Current		1460 K (BNL)

Proposals on Nucleon Matrix Elements

- Bhattacharya cEDM, $g_A(q^2)$, colver on HISQ, $m_{\pi} = 310$ MeV
- Engelhardt TMD, $g_A(q^2)$, EMFF, scalar and tensor charges, clover on clover, $m_n = 285 172$ MeV
- Kronfeld $g_A(q^2)$, HISQ on HISQ, $m_{\Pi} = 306 134$ MeV
- Liang nEDM with the θ term, overlap on DWF, cluster decomposition, $m_{\pi} = 170$ MeV
- Syritsyn cEDM and nEDM from θ term, proton decay ME, $g_A(q^2)$, EMFF, DWF on DWF, $m_n = 139$ MeV
- Yang Qaurk spin, g_A(q²) from AWI and from exact chiral current, overlap on DWF, m_π = 170 MeV

Highlights

PNDME, T. Bhattacharya, 10.1103/PhysRevD.94.054508

 g_A^{u-d} , g_S^{u-d} , g_T^{u-d}

Quark Orbital Angular Momentum

M. Engelhardt, arXiv: 1701.01536

Corrected nEDM formula

M. Abramczyk, S. Aoki, T. Blum, T. Izubuchi, H. Ohki, S. Syritsyn, arXiv: 1701.07792

$$\tilde{F}_3 = F_3 - 2\alpha_5 F_2$$

Note: $Q \propto \sqrt{V}$

Strange quark magnetic moment

Parity-violating ep scattering with radiative correction

R. Sufian et al, 1606.07075 PRL – editor's choice Nature – Ross Young

Glue Spin

 $S_G = 0.251(47)(16)$

Y. Yang et al, PRL 118, 102001 (2017), 1609.05837 Editor's choice

Physics ViewPoint: Steve Bass

g_A

- Issue (value smaller than expt.) still not settled recent work with DWF valence (E. Berkowitz et al., 1704.01114) obtains g_A = 1.278(21)(26), yet PNDME (T. Bhattacharya et al., 1606.07049) with Clover valence obtains g_A = 1.195(33)(20). They are based on the same HISQ configurations.
- To be calculated in 5 proposals from this year.
- Systematic errors: excited state, physical pion mass, infinite volume and continuum limits.
- O(a) error of the local axial-vector current (Martinelli et al., Nucl. Phys. B358, 212 (1991) for clover fermion), J. Liang et al., (1612.04388) for overlap fermion).