HUEY-WEN LIN Founded 1855

Lattice Parton Physics Project (LP3)

https://www.pa.msu.edu/~hwlin/LP3/

Huey-Wen Lin (PI) (MSU)

Xiangdong Ji (UMD)

Luchang Jin (BNL)

Peng Sun (MSU)

Yi-Bo Yang (MSU)

Yong Zhao (MIT)

International collaborators

Jiunn-Wei Chen Tomomi Ishikawa (NTU) (SJTU) Jian-Hui Zhang (Regensburg)

Parton Distribution Functions

§ PDFs are universal quark/gluon distributions of nucleon

Many ongoing/planned experiments (BNL, JLab, J-PARC, COMPASS, GSI, EIC, LHeC, ...)

Electron Ion Collider: The Next QCD Frontier

Imaging of the proton

How are the sea quarks and gluons, and their spins, distributed in space and momentum inside the nucleon? EIC White Paper, 1212.1701

Parton Distribution Functions

§ PDFs are universal quark/gluon distributions of nucleon

- Many ongoing/planned experiments (BNL, JLab, J-PARC, COMPASS, GSI, EIC, LHeC, ...)
- § Important inputs to discern new physics at LHC

Huey-Wen Lin — USQCD All Hands' Meeting

(J. Campbell, HCP2012)

Global Analysis

§ Discrepancies appear when data is scarce § Many groups have tackled the analysis

Huey-Wen Lin — USQCD All Hands' Meeting

Х

Parton Distributions and Lattice Calculations in the LHC era (PDFLattice 2017) 22-24 N

22-24 March 2017, Oxford, UK

MSTW08 ABM11

§ A first joint workshop with global-fitting community to address key LQCD inputs

10-1

10-2

- <u>http://www.physics.ox.ac.uk</u> /confs/PDFlattice2017
- Whitepaper will study the needed precision of lattice
 PDFs in the large-x region

A Promising New Direction

PDFs on the Lattice

- Long existing obstacles!
- § Lattice calculations rely on operator product expansion, only provide moments $\langle x^n \rangle$ $\langle x^n \rangle_q = \int_{-1}^{1} dx \, x^n q(x)$
- § For higher moments, all ops mix with lower-dimension ops
- \sim No practical proposal to overcome this
- New Strategy (LaMET):
- § Calculate finite-momentum boosted quark distribution
- § Feasible with today's resources!

 $\frac{x_{\perp}}{P_z = 0} \frac{1}{2} \frac{2}{3} \frac{x_{\perp}}{z_{\perp}}$

Xiangdong Ji, Phys. Rev. Lett. 111, 039103 (2013)

 $\boldsymbol{q(x,\mu)} = \tilde{q}(x,\mu,P_z) + \mathcal{O}(\alpha_s) + \mathcal{O}\left(M_N^2/P_z^2\right) + \mathcal{O}\left(\Lambda_{\rm QCD}^2/P_z^2\right)$

X. Xiong et al., 1310.7471; J.-W. Chen et al, 1603.06664

Sea Flavor Asymmetry

§ First time in LQCD history to study antiquark distribution! $\gg M_{\pi} \approx 310 \text{ MeV}$

$$\bar{q}(x) = -q(-x)$$

Lost resolution in small-x region Future improvement: larger lattice volume

$$dx\left(\bar{u}(x) - \bar{d}(x)\right) \approx -0.16(7)$$

Experiment	x range	$\int_0^1 [\overline{d(x)} - \overline{u(x)}] dx$
E866	0.015 < x < 0.35	0.118 ± 0.012
NMC	0.004 < x < 0.80	0.148 ± 0.039
HERMES	0.020 < x < 0.30	0.16 ± 0.03

R. Towell et al. (E866/NuSea), Phys.Rev. D64, 052002 (2001)

Sea Flavor Asymmetry

§ Lattice exploratory study $\gg M_{\pi} \approx 310 \text{ MeV}$

Compared with E866 Too good to be true?

Lost resolution in small-x region

Similar results repeated by ETMC, at $M_{\pi} \approx 373$ MeV ETMC, 1504.07455

Experiment	x range	$\int_0^1 [\overline{d(x)} - \overline{u(x)}] dx$
E866	0.015< <i>x</i> <0.35	0.118 ± 0.012
NMC	0.004 < x < 0.80	0.148 ± 0.039
HERMES	0.020< <i>x</i> <0.30	0.16 ± 0.03

(7)

R. Towell et al. (E866/NuSea), Phys.Rev. D64, 052002 (2001)

Transversity Distribution

§ Exploratory study $\gg M_{\pi} \approx 310 \text{ MeV}$

Pos(LATTICE 2013), 1603.06664

Progress Last Year: Systematics

Power Divergence

§ Improved quasi-quark distribution $\approx \tilde{q}_{imp}(x, \Lambda, p_z) = \int_{-\infty}^{\infty} \frac{dz}{4\pi} e^{izk_z - \delta m|z|} \langle p|\bar{\psi}(0, 0_{\perp}, z)\gamma_z L(z, 0)\psi(0)|p\rangle$ § Wilson-line renormalization to remove power divergence $\approx a \approx 0.09 \text{ fm}, L \approx 6 \text{ fm}, M_{\pi} \approx 130 \text{ MeV}, \text{ clover/HISQ}$

Jian-Hui Zhang

Luchang Jin

Renormalization

§ Ongoing investigation of renormalization

Investigating RI'MOM scheme renormalization (Yang)
RI'MOM to MS matching (Zhao)

§ Preliminary result

Yi-Bo Yang

Yong Zhao

2017/18 Allocation

Proposed Calculation

§ Proposed ensemble

≫ N_f = 2+1+1 clover/HISQ lattices (MILC) M_π ≈ **130 MeV**, *a* ≈ 0.09 fm (*L* ≈ 6 fm)

§ Proposed physics case

 \gg At least 3 t_{sep} , multiple mom. source smearing

Extended unpol. PDFs to larger p_z (w/mom. source) and polarized structure (helicity + transversity)
Eirst LOCD study of x dop't CDDs (2D Spatial Maps of the structure)

$$\begin{aligned} F_q(x,\xi,t) &= \int \frac{dz}{4\pi} e^{ixp^+z^-} \langle p'' | \bar{\psi}(-\frac{z}{2}) \gamma^+ L(-\frac{z}{2},\frac{z}{2}) \psi(\frac{z}{2}) | p' \rangle_{z^+=0,\vec{z}_\perp=0} \\ &= \frac{1}{2p^+} \Big[H(x,\xi,t) \bar{u}(p'') \gamma^+ u(p') + E(x,\xi,t) \bar{u}(p'') \frac{i\sigma^{+\nu} \Delta_{\nu}}{2m} u(p') \Big] \\ p^{\mu} &= \frac{p''^{\mu} + p'^{\mu}}{2}, \qquad \Delta^{\mu} = p''^{\mu} - p'^{\mu}, \qquad t = \Delta^2, \qquad \xi = \frac{p''^+ - p'^+}{p''^+ + p'^+} \end{aligned}$$

"The Tomography of the Nucleon — Spatial Imaging of Gluons and Sea Quarks"

Proposed Calculation

§ Proposed ensemble

- ≫ N_f = 2+1+1 clover/HISQ lattices (MILC) M_π ≈ **130 MeV**, *a* ≈ 0.09 fm (*L* ≈ 6 fm)
- § Proposed physics case
- \gg At least 3 t_{sep} , multiple mom. source smearing
- \gg Extended unpol. PDFs to larger p_z (w/mom. source) and polarized structure (helicity + transversity)
- First LQCD study of x-dep't GPDs (3D Spatial Maps of the Nucleon)

