The RBC/UKQCD g - 2 project

Christoph Lehner (BNL)

April 28, 2017 - USQCD All Hands Meeting

Collaborators

RBC/UKQCD

Tom Blum (Connecticut) Peter Boyle (Edinburgh) Norman Christ (Columbia) Vera Guelpers (Southampton) Masashi Hayakawa (Nagoya) James Harrison (Southampton) Taku Izubuchi (BNL/RBRC) Christoph Lehner (BNL) Chulwoo Jung (BNL) Andreas Jüttner (Southampton) Luchang Jin (Columbia) Antonin Portelli (Edinburgh) Matt Spraggs (Southampton)

Theory status – summary

Contribution	Value $ imes 10^{10}$	Uncertainty $\times 10^{10}$
QED (5 loops)	11 658 471.895	0.008
EW	15.4	0.1
HVP LO	692.3	4.2
HVP NLO	-9.84	0.06
HVP NNLO	1.24	0.01
Hadronic light-by-light	10.5	2.6
Total SM prediction	11 659 181.5	4.9
BNL E821 result	11 659 209.1	6.3
FNAL E989/J-PARC E34 goal		pprox 1.6

A reduction of uncertainty for HVP and HLbL is needed. A systematically improvable first-principles calculation is desired.

First-principles approach to HVP LO

Quark-connected piece with by far dominant part from up and down quark loops, $\mathcal{O}(700\times 10^{-10})$

Quark-disconnected piece, $-9.6(4.0) \times 10^{-10}$

Phys.Rev.Lett. 116 (2016) 232002

Biggest challenge to direct calculation at physical pion masses is to control statistics and potentially large finite-volume errors.

Statistics: for strange and charm solved issue, for up and down quarks existing methodology less effective

Finite-volume errors are exponentially suppressed in the simulation volume but may be sizeable

<u>A</u> HVP quark-connected contribution

Starting from the vector current

$$J_{\mu}(x) = i \sum_{f} Q_{f} \overline{\Psi}_{f}(x) \gamma_{\mu} \Psi_{f}(x)$$

we may write

$$a_{\mu}^{\mathrm{HVP}} = \sum_{t=0}^{\infty} w_t C(t)$$

with

$$C(t)=rac{1}{3}\sum_{ec x}\sum_{j=0,1,2}\langle J_j(ec x,t)J_j(0)
angle$$

and w_t capturing the photon and muon part of the diagram (Bernecker-Meyer 2011).

Integrand $w_T C(T)$ for the light-quark connected contribution:

 $m_{\pi} = 140$ MeV, a = 0.11 fm (RBC/UKQCD 48³ ensemble) Statistical noise from long-distance region

Addressing the long-distance noise problem

- ▶ Replace C(t) for large t with model; multi-exponentials for t ≥ 1.5 fm was recently used to compute a^{HVP}_µ LO CON = 666(6) × 10⁻¹⁰ arXiv:1601.03071.
- Our recent improvement: Improved stochastic estimator (hierarchical approximations including exact treatment of low-mode space; DeGrand & Schäfer 2004):

Complete first-principles analysis

• Currently the statistical uncertainty for a pure first-principles analysis in the continuum limit is at the $\Delta a_{\mu} \approx 15 \times 10^{-10}$ level

Contribution	Value $ imes 10^{10}$	Uncertainty $\times 10^{10}$
QED (5 loops)	11 658 471.895	0.008
EW	15.4	0.1
HVP LO	692.3	4.2
HVP NLO	-9.84	0.06
HVP NNLO	1.24	0.01
Hadronic light-by-light	10.5	2.6
Total SM prediction	11 659 181.5	4.9
BNL E821 result	11 659 209.1	6.3
Fermilab E989 target		≈ 1.6

- Sub-percent statistical error achievable with a few more months of running
- While we are waiting for more statistics

Combined lattice and dispersive analysis

We can use the dispersion relation to overlay experimental e^+e^- scattering data (Bernecker, Meyer 2011). Below the experimental result is taken from Jegerlehner 2016:

The lattice data is precise at shorter distances and the experimental data is precise at longer distances. We can do a combined analysis with lattice and experimental data: $a_{\mu} = \sum_{t=0}^{T} w_t C^{\text{lattice}}(t) + \sum_{t=T+1}^{\infty} w_t C^{\exp}(t)$

Errors range from \sim 0.5 to 1.2 % for T \lesssim 12 (GeV $^{-1}$)

This is a promising way to reduce the overall uncertainty on a short time-scale.

We can also learn about the validity of long-distance modelling from using the R-ratio data

We can also learn about the validity of long-distance modelling from using the R-ratio data

We can also learn about the validity of long-distance modelling from using the R-ratio data

If only data $t \le 1.5$ fm is used to constrain such a model, it is conceivable to systematically undershoot the true HVP by $O(30 \times 10^{-10})$.

Addressing the long-distance noise problem

- ▶ Replace C(t) for large t with model; multi-exponentials for t ≥ 1.5 fm was recently used to compute a^{HVP}_µ ^{LO} ^{CON} = 666(6) × 10⁻¹⁰ arXiv:1601.03071. Difficult to control systematics of modelling.
- Our recent improvement: Improved stochastic estimator (hierarchical approximations including exact treatment of low-mode space):

$\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \end{array}$ HVP quark-disconnected contribution

First results at physical pion mass with a statistical signal Phys.Rev.Lett. 116 (2016) 232002

Statistics is clearly the bottleneck; calculation was a potential road-block of a first-principles calculation for a long time; due to very large pion-mass dependence calculation at physical pion mass is crucial.

New stochastic estimator allowed me to get result

$$a_{\mu}^{
m HVP}$$
 (LO) DISC = $-9.6(3.3)_{
m stat}(2.3)_{
m sys} imes 10^{-10}$

from a modest computational investment (\approx 1M core hours).

New method: use importance sampling in position space and local vector currents

Calculate strong IB effects via insertions of mass corrections in an expansion around isospin symmetric point

Strategy

- 1. Re-tune parameters for QCD+QED simulation (m_u, m_d, m_s, a)
- 2. Verify simple observables $(m_{\pi^+} m_{\pi^0}, \ldots)$
- 3. Calculate QED and strong IB corrections to HVP LO

All results shown below are preliminary! For now focus on diagrams S, V, F; preliminary study below does not yet include re-tuning of a.

HVP QED+strong IB contributions RBC 2017 Diagrams S, V for pion mass:

HVP QED+strong IB contributions

HVP QED+strong IB contributions RBC 2017 HVP QED diagram V+S

HVP QED+strong IB contributions

Straightforward improvements of statistics available, too late for this talk

RBC 2017

Status and outlook for the HVP LO

- New methods: improved statistical estimators both for connected light and disconnected contributions at physical point.
- For the connected light contribution the new method reduces noise in the long-distance part of the correlator by an order of magnitude compared to previous method.
- For the disconnected contributions the new method allowed for a precise calculation at physical pion mass. Phys.Rev.Lett. 116 (2016) 232002
- Combination with e⁺e⁻ scattering data should allow for a significant improvement over current most precise estimate within the next 6 months.
- Leading QED corrections at physical pion mass under active investigation

The Hadronic Light-by-Light contribution

Quark-connected piece (charge factor of up/down quark contribution: $\frac{17}{81}$)

Dominant quark-disconnected piece (charge factor of up/down quark contribution: $\frac{25}{81}$)

Sub-dominant quark-disconnected pieces (charge factors of up/down quark contribution: $\frac{5}{81}$ and $\frac{1}{81}$)

All results below are from: T. Blum, N. Christ, M. Hayakawa, T. Izubuchi, L. Jin, and C.L., Phys. Rev. D 93, 014503 (2016)

Compute quark-connected contribution with new computational strategy

yields more than an order-of-magnitude improvement (red symbols) over previous method (black symbols) for a factor of \approx 4 smaller cost.

New stochastic sampling method

Stochastically evaluate the sum over vertices x and y:

- Pick random point x on lattice
- Sample all points y up to a specific distance r = |x − y|, see vertical red line
- ▶ Pick y following a distribution P(|x y|) that is peaked at short distances

Cross-check against analytic result where quark loop is replaced by muon loop

Current status of the HLbL

T. Blum, N. Christ, M. Hayakawa, T. Izubuchi, L. Jin, and C.L., PRL118(2017)022005

$$\begin{aligned} a_{\mu}^{\text{cHLbL}} &= \left. \frac{g_{\mu} - 2}{2} \right|_{\text{cHLbL}} = \left(0.0926 \pm 0.0077 \right) \left(\frac{\alpha}{\pi} \right)^{3} \\ &= \left(11.60 \pm 0.96 \right) \times 10^{-10} \quad (11) \end{aligned}$$
$$a_{\mu}^{\text{dHLbL}} &= \left. \frac{g_{\mu} - 2}{2} \right|_{\text{dHLbL}} = \left(-0.0498 \pm 0.0064 \right) \left(\frac{\alpha}{\pi} \right)^{3} \\ &= \left(-6.25 \pm 0.80 \right) \times 10^{-10} \quad (12) \end{aligned}$$
$$a_{\mu}^{\text{HLbL}} &= \left. \frac{g_{\mu} - 2}{2} \right|_{\text{HLbL}} = \left(0.0427 \pm 0.0108 \right) \left(\frac{\alpha}{\pi} \right)^{3} \\ &= \left(5.35 \pm 1.35 \right) \times 10^{-10} \quad (13) \end{aligned}$$

Makes HLbL an unlikely candidate to explain the discrepancy!

Next: finite-volume and lattice-spacing systematics; sub-leading diagrams

Finite-volume errors of the HLbL

Remove power-law like finite-volume errors by computing the muonphoton part of the diagram in infinite volume (C.L. talk at lattice 2015 and Green et al. 2015, PRL115(2015)222003; Asmussen et al. 2016, PoS,LATTICE2016 164)

Now completed arXiv:1704.XXXX with improved weighting function.

Next step: combine weighting function with existing QCD data

Summary and outlook

New methods allow for a substantial reduction in uncertainty of the theory calculation of the $(g - 2)_{\mu}$.

A reduction of uncertainty over the currently most precise value within the next year seems possible.

Over the next five years should allow for a reduction of uncertainty commensurate with the Fermilab E989 target precision.

The Fermilab experiment may have first results in 2018?

Thank you

The setup:

$$C(t) = \frac{1}{3V} \sum_{j=0,1,2} \sum_{t'} \langle \mathcal{V}_j(t+t') \mathcal{V}_j(t') \rangle_{\mathrm{SU}(3)}$$
(1)

where V stands for the four-dimensional lattice volume, $\mathcal{V}_{\mu}=(1/3)(\mathcal{V}_{\mu}^{u/d}-\mathcal{V}_{\mu}^{s})$, and

$$\mathcal{V}^f_{\mu}(t) = \sum_{\vec{x}} \operatorname{Im} \operatorname{Tr}[D^{-1}_{\vec{x},t;\vec{x},t}(m_f)\gamma_{\mu}].$$
⁽²⁾

We separate 2000 low modes (up to around m_s) from light quark propagator as $D^{-1} = \sum_n v^n (w^n)^{\dagger} + D_{\text{high}}^{-1}$ and estimate the high mode stochastically and the low modes as a full volume average Foley 2005.

We use a sparse grid for the high modes similar to Li 2010 which has support only for points x_{μ} with $(x_{\mu} - x_{\mu}^{(0)}) \mod N = 0$; here we additionally use a random grid offset $x_{\mu}^{(0)}$ per sample allowing us to stochastically project to momenta.

Combination of both ideas is crucial for noise reduction at physical pion mass!

Fluctuation of $\mathcal{V}_{\mu}(\sigma)$:

Since C(t) is the autocorrelator of V_{μ} , we can create a stochastic estimator whose noise is potentially reduced linearly in the number of random samples, hence the normalization in the lower panel

Low-mode saturation for physical pion mass (here 2000 modes):

Result for partial sum $L_T = \sum_{t=0}^T w_t C(t)$:

For $t \ge 15 C(t)$ is consistent with zero but the stochastic noise is t-independent and $w_t \propto t^4$ such that it is difficult to identify a plateau region based only on this plot

Resulting correlators and fit of $C(t) + C_s(t)$ to $c_{\rho}e^{-E_{\rho}t} + c_{\phi}e^{-E_{\phi}t}$ in the region $t \in [t_{\min}, \ldots, 17]$ with fixed energies $E_{\rho} = 770$ MeV and $E_{\phi} = 1020$. $C_s(t)$ is the strange connected correlator.

We fit to $C(t) + C_s(t)$ instead of C(t) since the former has a spectral representation.

We could use this model alone for the long-distance tail to help identify a plateau but it would miss the two-pion tail

We therefore additionally calculate the two-pion tail for the disconnected diagram in ChPT:

A closer look at the NLO FV ChPT prediction (1-loop sQED):

We show the partial sum $\sum_{t=0}^{T} w_t C(t)$ for different geometries and volumes:

The dispersive approach to HVP LO

The dispersion relation

$$\Pi_{\mu\nu}(q) = i \left(q_{\mu}q_{\nu} - g_{\mu\nu}q^2 \right) \Pi(q^2)$$

$$\Pi(q^2) = -\frac{q^2}{\pi} \int_{4m_{\pi}^2}^{\infty} \frac{ds}{s} \frac{\mathrm{Im}\Pi(s)}{q^2 - s}.$$

allows for the determination of a_{μ}^{HVP} from experimental data via

$$egin{aligned} &a^{\mathrm{HVP\ LO}}_{\mu} = \Big(rac{lpha m_{\mu}}{3\pi}\Big)^2 \left[\int^{E_0^2}_{4m_{\pi}^2} ds rac{R^{\mathrm{exp}}_{\gamma}(s)\hat{K}(s)}{s^2} + \int^{\infty}_{E_0^2} ds rac{R^{\mathrm{pQCD}}_{\gamma}(s)\hat{K}(s)}{s^2}
ight], \ &R_{\gamma}(s) = \sigma^{(0)}(e^+e^- o \gamma^* o \mathrm{hadrons})/rac{4\pilpha^2}{3s} \end{aligned}$$

Experimentally with or without additional hard photon (ISR: $e^+e^- \rightarrow \gamma^*(\rightarrow \text{hadrons})\gamma$)

Experimental setup: muon storage ring with tuned momentum of muons to cancel leading coupling to electric field

$$\vec{\omega}_a = -\frac{q}{m} \left[a_\mu \vec{B} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right]$$

Because of parity violation in weak decay of muon, a correlation between muon spin and decay electron direction exists, which can be used to measure the anomalous precession frequency ω_a :

BESIII 2015 update:

Hagiwara et al. 2011:

Problematic experimental region can readily be replaced by precise lattice data. Lattice also can be arbiter regarding different experimental data sets.

Jegerlehner FCCP2015 summary:

final state	range (GeV)	$a_{\mu}^{\text{had}(1)} \times 10^{10}$ (stat) (syst) [tot]	rel	abs
ρ	(0.28, 1.05)	507.55 (0.39) (2.68)[2.71]	0.5%	39.9%
ω	(0.42, 0.81)	35.23 (0.42) (0.95)[1.04]	3.0%	5.9%
ϕ	(1.00, 1.04)	34.31 (0.48) (0.79)[0.92]	2.7%	4.7%
J/ψ		8.94 (0.42) (0.41)[0.59]	6.6%	1.9%
Υ		0.11 (0.00) (0.01)[0.01]	6.8%	0.0%
had	(1.05, 2.00)	60.45 (0.21) (2.80)[2.80]	4.6%	42.9%
had	(2.00, 3.10)	21.63 (0.12) (0.92)[0.93]	4.3%	4.7%
had	(3.10, 3.60)	3.77 (0.03) (0.10)[0.10]	2.8%	0.1%
had	(3.60, 9.46)	13.77 (0.04) (0.01)[0.04]	0.3%	0.0%
had	(9.46,13.00)	1.28 (0.01) (0.07)[0.07]	5.4%	0.0%
pQCD	(13.0,∞)	1.53 (0.00) (0.00)[0.00]	0.0%	0.0%
data	(0.28,13.00)	687.06 (0.89) (4.19)[4.28]	0.6%	0.0%
total		688.59 (0.89) (4.19)[4.28]	0.6%	100.0%

Results for $a_{\mu}^{had(1)} \times 10^{10}$. Update August 2015, incl SCAN[NSK]+ISR[KLOE10,KLOE12,BaBar,BESIII] Jegerlehner FCCP2015 summary ($\tau \leftrightarrow e^+e^-$):

Our setup:

$$C(t) = \frac{1}{3V} \sum_{j=0,1,2} \sum_{t'} \langle \mathcal{V}_j(t+t') \mathcal{V}_j(t') \rangle_{\mathrm{SU}(3)}$$
(3)

where V stands for the four-dimensional lattice volume, $\mathcal{V}_{\mu}=(1/3)(\mathcal{V}_{\mu}^{u/d}-\mathcal{V}_{\mu}^{s})$, and

$$\mathcal{V}^f_{\mu}(t) = \sum_{\vec{x}} \operatorname{Im} \operatorname{Tr}[D^{-1}_{\vec{x},t;\vec{x},t}(m_f)\gamma_{\mu}].$$
(4)

We separate 2000 low modes (up to around m_s) from light quark propagator as $D^{-1} = \sum_n v^n (w^n)^{\dagger} + D_{\text{high}}^{-1}$ and estimate the high mode stochastically and the low modes as a full volume average Foley 2005.

We use a sparse grid for the high modes similar to Li 2010 which has support only for points x_{μ} with $(x_{\mu} - x_{\mu}^{(0)}) \mod N = 0$; here we additionally use a random grid offset $x_{\mu}^{(0)}$ per sample allowing us to stochastically project to momenta.

Study $L_T = \sum_{t=T+1}^{\infty} w_t C(t)$ and use value of T in plateau region (here T = 20) as central value. Use a combined estimate of a resonance model and the two-pion tail to estimate systematic uncertainty.

Combined with an estimate of discretization errors, we find

$$a_{\mu}^{\mathrm{HVP}\ \mathrm{(LO)}\ \mathrm{DISC}} = -9.6(3.3)_{\mathrm{stat}}(2.3)_{\mathrm{sys}} imes 10^{-10}$$
. (5)

From Aubin et al. 2015 (arXiv:1512.07555v2)

MILC lattice data with $m_{\pi}L = 4.2$, $m_{\pi} \approx 220$ MeV; Plot difference of $\Pi(q^2)$ from different irreps of 90-degree rotation symmetry of spatial components versus NLO FV ChPT prediction (red dots)

While the absolute value of a_{μ} is poorly described by the two-pion contribution, the volume dependence may be described sufficiently well to use ChPT to control FV errors at the 1% level; this needs further scrutiny

Aubin et al. find an O(10%) finite-volume error for $m_{\pi}L = 4.2$ based on the $A_1 - A_1^{44}$ difference (right-hand plot)

Compare difference of integrand of $48 \times 48 \times 96 \times 48$ (spatial) and $48 \times 48 \times 48 \times 96$ (temporal) geometries with NLO FV ChPT $(A_1 - A_1^{44})$:

 $m_{\pi}=140$ MeV, $p^2=m_{\pi}^2/(4\pi f_{\pi})^2pprox 0.7\%$

