SPC Summary

BSM – Energy Frontier USQCD proposals, 2017

Anna Hasenfratz

BSM within USQCD

Almost all HEP -USQCD effort is related to BSM physics

What falls in the BSM - Intensity Frontier category?

- Strongly coupled models that are BSM candidates
 - Dilaton like Higgs 🗸
 - pNGB like Higgs 🗸
 - models where walking is tunable \checkmark
 - models with partial compositeness \checkmark
 - models with 4-fermion interactions
 -
- Dark matter from strongly coupled models \checkmark
- Investigations of general conformal systems
 - boundary of conformal window \checkmark
 - anomalous dimensions \checkmark
- SUSY & AdS/CFT correspondance

✓ by USQCD

BSM within USQCD

Relatively small effort: 6.5% of all requests,


```
Total:(J-psi hrs)
IF: 21%
EF: 6.5 %
```

NP: 56 % Th: 16.5 %

BSM within USQCD

Goal:

understand the (general) properties of models that could describe BSM physics

Synergies:

• Pheno community :

predictions for non-perturbative quantities like

- hadron spectrum in near-conformal or walking theories
- anomalous dimensions relevant for mass generation
- Lattice community :
 - BSM models are QCD variants. BSM projects contribute
 - HMC code testing/development (SUSY, Grid code for MDW, staggered w/FUEL)
 - Measurement techniques (disconnected spectrum, spectrum with gradient flow - mixed action studies, step scaling / β function calculations)
 - Most collaborations will share codes & configurations

2017 USQCD BSM proposals:

80.4M Jpsi
6.1M Jpsi
24.4M Jpsi
14.8M Jpsi
18M Jpsi

Incite projects:

- LHColl : sextet
- LSD : 8 flavors, 4+4 flavors (staggered), 4+6 MDW
- SUSY (see J. Giedt's talk)

J. Kuti/LHColl: The composite Higgs with new lattice BSM

▶ 80.4M Jpsi on GPU

- 2-flavor SU(3) sextet model is candidate BSM with
 - only 3 Goldstone pions
 - light Higgs as 0⁺⁺ sigma state
- On-going project; Configurations are generated with Incite & other time; Request is for capacity computing on GPU for measurements
 - RG β function
 - η -prime through topology gradient flow
 - mass anomalous dimension (close to 1)
 - spectrum both in ε and p-regime; many on gradient-flowed configurations (mixed action)

J. Kuti/LHColl: The composite Higgs with new lattice BSM

1) <u>https://arxiv.org/abs/1312.5330</u>

E.Neil: Composite Higgs on the Lattice

 6.1M Jpsi, clusters

- First lattice efforts pursuing "composite PNGB Higgs" by Tel Aviv/Colorado
- Higgs boson appears as an <u>exact</u> Goldstone of chiral symmetry breaking; interactions w/EW, top quark generate usual Higgs potential.
- UV completions of such models (mostly) classified by Ferretti and Karateev¹; simplest model is SU(4) w/ fermions in 4 and 6 irreps
- Initial lattice studies underway (right): meson spectroscopy tests chiPT with two irreps. Future results: finite-T, Higgs potential, top partner decay...

1) <u>https://arxiv.org/abs/1312.5330</u>

E.Neil: Composite Higgs on the Lattice

 6.1M Jpsi, clusters

- First lattice efforts pursuing "composite PNGB Higgs" by Tel Aviv/Colorado
- Higgs boson appears as an <u>exact</u> Goldstone of chiral symmetry breaking; interactions w/EW, top quark generate usual Higgs potential.
- UV completions of such models (mostly) classified by Ferretti and Karateev¹; simplest model is SU(4) w/ fermions in 4 and 6 irreps
- This model is not near an IRFP.
 It is not expected to show walking or even large anomalous dimensions - those properties should come form a UV completion

O. Witzel/LSD : 4+6 flavors with DWF

Most BSM systems require large scale separation between IR & UV ("need walking")

Mass split systems with m_{ℓ} light and m_h heavy flavors achieve this

- the scale separation is tunable by m_h
- UV spectrum is governed by a conformal fixed point of $m_\ell \text{+} m_h$ flavors
 - hyperscaling and high level predictability
- IR is chirally broken with m_ℓ light flavors

Previous study of 4 light + 8 heavy flavors verified these principles

New proposal: study 4 light + 6 heavy flavors with DWF

- closer to the conformal window
- correct chiral symmetry is important at the conformal FP that governs the UV behavior
- use the GRID code for configuration generation

C. Rebbi: Step scaling study of 10 and 12 flavors with DWF 14.8M Jpsi cluster or KNL

Goal:

- Investigate the parameter range of 10 flavors in preparation for the 4+6 study
- Study universality of fermion actions at conformal FP with 12 flavors

Step scaling function with $N_f=10$ suggesting the existence of an IRFP in agreement with Chiu'16

- Small but active community
- There are several new/developing projects, methods Waiting for more participants and projects!