SPC: muon g-2 session

Aida X. El-Khadra (University of Illinois)

USQCD All Hands meeting, JLab, 28-29 April 2017

Introduction

$$\mu = (-ie) \bar{u}(p') \left[\gamma^{\mu} F_1(q^2) + \frac{i\sigma^{\mu\nu} q_{\nu}}{2m} F_2(q^2) \right] u(p)$$

- ← muon anomalous magnetic moment: $a_{\mu} = F_2(0)$ receives contributions from QED, EW, and QCD corrections.
- ◆ QED + EW correction are known precisely:

$$a_{\mu}^{\text{QED}} \times 10^{11} = 116584718.853 \pm 0.036$$

 $a_{\mu}^{\text{EW}} \times 10^{11} = 153.6 \pm 1.0$

◆ QCD corrections are the dominant source of error in the SM prediction:

 $a_{\mu}^{\text{had}} \times 10^{11} = 6945 \pm 49$

(Davier et al. 2011, Hagiwara et al 2011, Kurz et al 2014, Prades et al 2009, Colangelo et al 2014, Jegerlehner 2015, Benayoun et al 2015,...)

Introduction

Experiment vs SM theory

T. Blum et al. (arXiv:1311.2198)

Fermilab g-2 experiment:

- ✦ reduce exp. error by a factor of 4
- first measurement with "Brookhaven level" uncertainty expected in 2018.
- Commissioning of beam has just started.

J-PARC experiment:

- ✦ complementary experiment
- ♦ expect measurement at 0.4 ppm level

Need to reduce and better control theory error for the hadronic corrections.

Hadronic vacuum polarization

- ♦ use dispersion relation + experimental data for $e^+e^- \rightarrow hadrons$
- ♦ current uncertainty ~0.6%
- ♦ can be improved with more precise experimental data
- new experimental measurements expected/ongoing at BES-III, VEPP-2000, Belle/Belle-II,
- ♦ lattice QCD:

for (sub)percent precision, calculations of HVP correction need to include

- physical mass ensembles
- disconnected contributions
- QED and strong isospin breaking corrections
- Finite volume corrections
- ✦ Hybrid method: combine LQCD with experimental data to reduce errors (Lehner @ Lattice 2016)

Hadronic light-by-light:

- + current estimate "Glasgow consensus" based on different QCD models
- theory error not well known
- dispersion relations: more complicated than for HVP (Colangelo et al, arXiv:1702.07347)
 combine with exp. data and/or LQCD calculations

Direct lattice QCD calculations:

- ♦ QCD + stochastic QED (Jin et al, arXiv:1610.04603, 2016 PRL)
- ♦ QCD + exact QED kernel (Asmussen@ Lattice 2016; Green et al, arXiv:PRL 2015)
- ✦ dominant exclusive contributions (transition form factors) (Gerardin et al, arXiv:1607.08174, 2016 PRD, Lattice 2016)

USQCD g-2 proposals overview

RBC/UKQCD:

 \bigstar HVP QED corrections

쓫 34.5 M Jpsi; storage: 76 TB disk

Aubin, Blum, Golterman, Peris:
 LO HVP, focus on FV corrections
 63 M Jpsi CPU; storage: 96 TB disk + 96 TB tape

FNAL/MILC/HPQCD:

 \checkmark HVP connected + disconnected, QED + IB corrections

👷 18 M Jpsi CPU; 421K GPU (BNL); 15% Mira ZPT,

storage: 34 TB tape

First Workshop of the Muon g-2 Theory Initiative

- ..

Chairs:

3-6 June 2017 US/Central timezone

Search

. . ..

Committees Timetable Registration L Registration Form	the already very precisely measured anomalous magnetic moment of the muon by a factor of four. The goal is to resolve the current tantalizing tension between theory and experiment of three to four standard deviations. On the theory side the hadronic corrections to the anomalous magnetic moment are the dominant sources of uncertainty. They must be determined with better precision in order to unambiguously discover whether or not new physics effects contribute to this quantity.
List of registrants List of confirmed speakers Travel and Transportation Accommodations Wilson Hall	There are a number of complementary theoretical efforts underway to better understand and quantify the hadronic corrections, including dispersive methods, lattice QCD, effective field theories, and QCD models. We have formed a new theory initiative to facilitate interactions between the different groups through organizing a series of workshops. The goal of this first workshop is to bring together theorists from the different communities to discuss, assess, and compare the status of the various efforts, and to map out strategies for obtaining the best theoretical predictions for these hadronic corrections in advance of the experimental results.
Visa Information General Information	All sessions in this workshop will be plenary, featuring a mix of talks and discussions. Dates: from June 3, 2017 08:00 to June 6, 2017 18:00 Timezone: US/Central

https://indico.fnal.gov/conferenceDisplay.py?confId=13795

Dr. Van de Water, Ruth

Prof. Roberts, Bradley Lee

Dr. Lehner, Christoph

Prof. El-Khadra, Aida Dr. Izubuchi, Taku