Kaon Physics in the Standard Model

RBC and UKQCD Collaborations

USQCD All Hands Meeting April 28, 2017

Norman H. Christ

Columbia University

Five Topics

- 2nd order weak with charm
 - Long distance contribution rare kaon decays, $K \rightarrow \pi v \overline{v}$

 $- K_L - K_S$ mixing:

- $K_L K_S$ mass difference
- Long distance contribution to ε_{κ}
- $K \rightarrow \pi \pi$ decay and ε'
 - G-parity boundary conditions
 - periodic boundary conditions

RBC Collaboration

- BNL
 - Chulwoo Jung
 - Taku Izubuchi
 - Luchang Jin
 - Christoph Lehner
 - Meifeng Lin
 - Amarjit Soni
- RBRC
 - Mattia Bruno
 - Shigemi Ohta (KEK)
 - Sergey Syritsyn
- Beijing

 Xu Feng

- Columbia
 - Ziyuan Bai
 - Norman Christ
 - Duo Guo
 - Chris Kelly
 - Robert Mawhinney
 - David Murphy
 - Masaaki Tomii
 - Jiqun Tu
 - Bigeng Wang
 - Tianle Wang
- Connecticut
 - Tom Blum
 - Dan Hoying

UKQCD Collaboration

- Southampton
 - Jonathan Flynn
 - Vera Guelpers
 - James Harrison
 - Andreas Juttner
 - Andrew Lawson
 - Edwin Lizarazo
 - Chris Sachrajda

- Edinburgh
 - Peter Boyle
 - Guido Cossu
 - Julien Frison (KEK)
 - Nicolas Garron (Plymouth)
 - Julia Kettle
 - Ava Khamseh
 - Antonin Portelli
 - Tobias Tsang
 - Oliver Witzel

Rare Kaon Decays

USQCD: All-Hands 4/28/2017 (5)

 $K^+ \rightarrow \pi^+ \nu \bar{\nu}$

- Flavor changing neutral current
 - Allowed in the Standard Model only in second order
 - Short distance dominated
- Target of NA62 at CERN
 - 100 events in 2-3 years
 - Test Standard Model
 prediction at 10% level
 - Use lattice for long distance part: 5% effect ?

• Estimate 3 contributions: top : charm-sd : charm-ld [Cirigliano et.al. Rev. Mod. Phys.]

$$\lambda_t \frac{m_t^2}{M_W^2} : \lambda_c \frac{m_c^2}{M_W^2} \ln \frac{M_W}{m_c} : \lambda_u \frac{\Lambda_{\rm QCD}^2}{M_W^2} = 68\% : 29\% : 3\%$$

- Expect \leq 10% long-distance uncertainty
- Important target for lattice calculation

$K^+ \rightarrow \pi^+ \nu \, \overline{\nu}$ at long distance

USQCD: All-Hands 4/28/2017 (8)

 $H_{\rm eff}$ for $K^+ \rightarrow \pi^+ \nu \ \overline{\nu}$

 $H_{\rm eff}$ for $K^+ \rightarrow \pi^+ \nu \, \overline{\nu}$

$$H_{\text{eff}} \text{ for } K^{+} \Rightarrow \pi^{+} \nu \bar{\nu}$$

$$\int_{V} \frac{\overline{Q}_{\ell}}{V_{\ell}} \frac{\overline{Q}_{\ell}}{V_{\ell}}$$

Euclidean-space Lattice Calculation

• Unphysical terms growing exponentially with time

$$\int_{-T}^{T} dt \langle \pi \nu \overline{\nu} | T \left(O_A(t) O_B(0) \right) | K \rangle$$

= $\sum_{n} \left\{ \frac{\langle \pi \nu \overline{\nu} | O_A|n \rangle \langle n | O_B| K \rangle}{M_K - E_n} + \frac{\langle \pi \nu \overline{\nu} | O_B|n \rangle \langle n | O_A| K \rangle}{M_K - E_n} \right\} \left(1 - e^{(M_K - E_n)T} \right)$

- Terms with $M_{\kappa} > E_n$ must be removed.
- GIM cancellation leaves a logarithmic divergence which must be replaced by a perturbative, electro-weak LEC.

Exploratory Lattice Calculations

- 16³ x 32, RBC-UKQCD ensemble
 - 2+1 flavor DWF, 1/a = 1.73 GeV
 - $M_{\pi} = 420 \text{ MeV}, M_{K} = 540 \text{ MeV},$
 - $-m_c(2 \text{ GeV})^{\overline{\text{MS}}} = 863 \text{ GeV}$
 - 800 configurations, time translate 32 times
 - $-P_c = 0.253(6) + 0.004(6)$ (large cancellation)
- USQCD Project:
 - $-32^3 \times 64$ Iwasaki-DSDR, m_{π} = 170 MeV
 - Find weak dependence on Dalitz variables
- 2018 Incite target: M_{π} = 135 MeV, 64³ x 128

Kaon Mixing CP violation $K \rightarrow \pi \pi decay$

USQCD: All-Hands 4/28/2017 (14)

$K \rightarrow \pi \pi$ and CP violation

• Final $\pi\pi$ states can have I = 0 or 2.

$$\langle \pi \pi (I=2) | H_w | K^0 \rangle = A_2 e^{i\delta_2} \qquad \Delta I = 3/2 \langle \pi \pi (I=0) | H_w | K^0 \rangle = A_0 e^{i\delta_0} \qquad \Delta I = 1/2$$

- CP symmetry requires A_0 and A_2 be real.
- Direct CP violation in this decay is characterized by:

$$\epsilon' = \frac{i e^{\delta_2 - \delta_0}}{\sqrt{2}} \left| \frac{A_2}{A_0} \right| \left(\frac{\operatorname{Im} A_2}{\operatorname{Re} A_2} - \frac{\operatorname{Im} A_0}{\operatorname{Re} A_0} \right) \quad \begin{array}{c} \text{Direct CP} \\ \text{violation} \end{array}$$

 $K^0 - \overline{K^0}$ mixing

- Δ S=1 weak decays allow K^0 and K^0 to decay to the same $\pi \pi$ state.
- Resulting mixing described by Wigner-Weisskopf:

$$i\frac{d}{dt}\left(\frac{K^{0}}{\overline{K}^{0}}\right) = \left\{ \left(\begin{array}{cc} M_{00} & M_{0\overline{0}} \\ M_{\overline{0}0} & M_{\overline{0}\overline{0}} \end{array}\right) - \frac{i}{2} \left(\begin{array}{cc} \Gamma_{00} & \Gamma_{0\overline{0}} \\ \Gamma_{\overline{0}0} & \Gamma_{\overline{0}\overline{0}} \end{array}\right) \right\} \left(\begin{array}{c} K^{0} \\ \overline{K}^{0} \end{array}\right)$$

• Decaying states are mixtures of *K*⁰ and *K*⁰

$$|K_{S}\rangle = \frac{K_{+} + \overline{\epsilon}K_{-}}{\sqrt{1 + |\overline{\epsilon}|^{2}}} \qquad \overline{\epsilon} = \frac{i}{2} \left\{ \frac{\operatorname{Im} M_{0\overline{0}} - \frac{i}{2} \operatorname{Im} \Gamma_{0\overline{0}}}{\operatorname{Re} M_{0\overline{0}} - \frac{i}{2} \operatorname{Re} \Gamma_{0\overline{0}}} \right\}$$
$$|K_{L}\rangle = \frac{K_{-} + \overline{\epsilon}K_{+}}{\sqrt{1 + |\overline{\epsilon}|^{2}}} \qquad \operatorname{Indirect CP}_{violation}$$

USQCD: All-Hands 4/28/2017 (16)

CP violation

• CP violating, experimental amplitudes:

$$\eta_{+-} \equiv \frac{\langle \pi^+ \pi^- | H_w | K_L \rangle}{\langle \pi^+ \pi^- | H_w | K_S \rangle} = \epsilon + \epsilon'$$

$$\eta_{00} \equiv \frac{\langle \pi^0 \pi^0 | H_w | K_L \rangle}{\langle \pi^0 \pi^0 | H_w | K_S \rangle} = \epsilon - 2\epsilon'$$

• Where:

$$\epsilon = \overline{\epsilon} + i \frac{\mathrm{Im}A_0}{\mathrm{Re}A_0}$$

Indirect: $|\varepsilon| = (2.228 \pm 0.011) \times 10^{-3}$

Direct: $\text{Re}(\varepsilon'/\varepsilon) = (1.66 \pm 0.23) \times 10^{-3}$

USQCD: All-Hands 4/28/2017 (17)

K⁰ – K⁰ mixing

USQCD: All-Hands 4/28/2017 (18)

$K^0 - K^0$ Mixing

• CP violating: $p \sim m_t$ $\epsilon_K = \frac{i}{2} \left\{ \frac{\operatorname{Im} M_{0\overline{0}} - \frac{i}{2} \operatorname{Im} \Gamma_{0\overline{0}}}{\operatorname{Re} M_{0\overline{0}} - \frac{i}{2} \operatorname{Re} \Gamma_{0\overline{0}}} \right\} + i \frac{\operatorname{Im} A_0}{\operatorname{Re} A_0}$

• CP conserving: $p \le m_c$ $m_{K_S} - m_{K_L} = 2 \operatorname{Re}\{M_{0\overline{0}}\}$

USQCD: All-Hands 4/28/2017 (19)

K_L – K_S mass difference

USQCD: All-Hands 4/28/2017 (20)

Lattice calculations

- Must include charm quark (GIM u–c cancellation)
- Three calculations performed:

m_{π} = 135 MeV – 64³ x 128 result (Ziyuan Bai)

- 2+1 flavor, DWF ensemble:
 - 64³ x 128, 1/a=2.4 GeV
 - Valence, physical mass charm
 - 160 configurations
- 2016 and 2017 Incite project
 - Type 3 & 4, AMA:52 sloppy, 7 exact
 - Type 1 & 2: 11 (exact)
 - All-2-all without time dilution, 2,000 eigenvectors
 - Single integration method

- Current result:
 - $\Delta M_{K} = 4.88(170)$ x 10⁻¹² MeV
 - Expt: 3.483(6) x
 10⁻¹² MeV

Long distance part of \mathcal{E}_K

USQCD: All-Hands 4/28/2017 (23)

\mathcal{E}_{κ} – Overview

- ε_{κ} : Indirect CP violation in $K^0 \rightarrow \pi\pi$ decay.
 - Experiment: 2.228(11) x 10⁻³
 - Theory: 2.13(23) x 10⁻³ [SWME arXiv:1503.06613]
- Theory error dominated by $(V_{cb})^4$ factor
- ε_{κ} decomposition:

$$\lambda_q = V_{qs}^{\ *} V_{qd}$$

- 2/3 top x top ($\lambda_t \lambda_t$)
 1/3 top x charm ($\lambda_t \lambda_c$)
 short distance
- 2 4% long distance contribution

△S = 1, Four flavor operators (Ziyuan Bai)

• Choose appropriate $N_f = 4$ effective Hamiltonian:

$$H_{W}^{\Delta S=1;\Delta C=\pm 1,0} = \frac{G_{F}}{\sqrt{2}} \left\{ \sum_{q,q'=u,c} V_{q's}^{*} V_{qd} \sum_{i=1}^{2} C_{i} Q_{i}^{q'q} + V_{ts}^{*} V_{td} \sum_{i=3}^{6} C_{i} Q_{i} \right\}$$

$$Q_{1}^{q'q} = (\bar{s}_{i}q'_{j})_{V-A} (\bar{q}_{j}d_{i})_{V-A}$$

$$Q_{2}^{q'q} = (\bar{s}_{i}q'_{i})_{V-A} (\bar{q}_{j}d_{j})_{V-A}$$

$$Q_{3} = (\bar{s}_{i}d_{i})_{V-A} \sum_{q=u,d,s,c} (\bar{q}_{j}q_{j})_{V-A}$$

$$Q_{4} = (\bar{s}_{i}d_{j})_{V-A} \sum_{q=u,d,s,c} (\bar{q}_{j}q_{j})_{V-A}$$

$$Q_{5} = (\bar{s}_{i}d_{i})_{V-A} \sum_{q=u,d,s,c} (\bar{q}_{j}q_{j})_{V+A}$$

$$Q_{6} = (\bar{s}_{i}d_{j})_{V-A} \sum_{q=u,d,s,c} (\bar{q}_{j}q_{j})_{V+A}$$

USQCD: All-Hands 4/28/2017 (25)

Diagrams for $\lambda_t \lambda_u$ contribution to ε_K (Ziyuan Bai)

• Identify five types of diagrams

USQCD: All-Hands 4/28/2017 (26)

Exploratory calculation (Ziyuan Bai)

- 243 x 64, 1/a=1.73 GeV, M_{π} = 340 MeV, m_c =968 MeV
- Perturbative LEC added to correct log divergence
- Preliminary results from 200 configurations.

μ_{RI}	$\mathrm{Im} M^{ut,RI}_{\bar{0}0}$	$\mathrm{Im} M^{ut,RI \to \overline{MS}}_{\bar{0}0}$	${\rm Im} M^{ut,ldcorr}_{\bar 00}$	$\epsilon_K^{ut,ldcorr}$
$1.54 \mathrm{GeV}$	-0.746(0.389)	0.282	-0.464 (0.389)	0.0911(0.076)
$1.92 \mathrm{GeV}$	-0.912(0.389)	0.384	-0.527 (0.389)	0.104(0.076)
2.11 GeV	-0.986(0.389)	0.434	-0.551 (0.389)	0.108(0.076)
2.31 GeV	-1.050(0.390)	0.486	-0.565 (0.390)	0.111(0.077)
2.56 GeV	-1.115(0.390)	0.548	-0.568 (0.390)	0.111(0.077)

- $|\mathcal{E}_{\mathcal{K}}| = 2.228(11) \times 10^{-3} \text{ expt.}$
- 2018 Incite target: 64³ x 128, physical mass result

USQCD: All-Hands 4/28/2017 (27)

$K \rightarrow \pi \pi$ decay

USQCD: All-Hands 4/28/2017 (28)

Four quark operators ($N_f=3$)

Current-current operators

 $Q_1 \equiv (\bar{s}_{\alpha} d_{\alpha})_{V-A} (\bar{u}_{\beta} u_{\beta})_{V-A}$ $Q_2 \equiv (\bar{s}_{\alpha} d_{\beta})_{V-A} (\bar{u}_{\beta} u_{\alpha})_{V-A}$

QCD Penguins

d s

$$Q_{3} \equiv (\bar{s}_{\alpha}d_{\alpha})_{V-A} \sum_{q=u,d,s} (\bar{q}_{\beta}q_{\beta})_{V-A}$$

$$Q_{4} \equiv (\bar{s}_{\alpha}d_{\beta})_{V-A} \sum_{q=u,d,s} (\bar{q}_{\beta}q_{\alpha})_{V-A}$$

$$Q_{5} \equiv (\bar{s}_{\alpha}d_{\alpha})_{V-A} \sum_{q=u,d,s} (\bar{q}_{\beta}q_{\beta})_{V+A}$$

$$Q_{6} \equiv (\bar{s}_{\alpha}d_{\beta})_{V-A} \sum_{q=u,d,s} (\bar{q}_{\beta}q_{\alpha})_{V+A}$$

q = u.d.s

Electro-Weak uct w2 vit $Q_7 \equiv \frac{3}{2} (\bar{s}_{\alpha} d_{\alpha})_{V-A} \sum e_q (\bar{q}_{\beta} q_{\beta})_{V+A}$ q = u, d, s $Q_8 \equiv \frac{3}{2} (\bar{s}_{\alpha} d_{\beta})_{V-A} \sum e_q (\bar{q}_{\beta} q_{\alpha})_{V+A}$ a = u.d.s $Q_9 \equiv \frac{3}{2} (\bar{s}_{\alpha} d_{\alpha})_{V-A} \sum_{\alpha} e_q (\bar{q}_{\beta} q_{\beta})_{V-A}$ q = u, d, s $Q_{10} \equiv \frac{3}{2} (\bar{s}_{\alpha} d_{\beta})_{V-A} \sum e_q (\bar{q}_{\beta} q_{\alpha})_{V-A}$ a = u.d.s

USQCD: All-Hands 4/28/2017 (29)

Physical $\pi \pi$ states Lellouch-Luscher

- Euclidean $e^{-H_{QCD}t}$ projects onto $|\pi\pi(\vec{p}=0)\rangle$
- Exploit finite-volume quantization.
 - Adjust volume so 1^{st} or 2^{nd} excited state has correct \vec{p} .

- $\circ\,$ Introduce boundary conditions so that the ground state has physical \vec{p}
- Discuss two complimentary projects:
 - Status of calculation with G-parity boundary conditions.
 - New project with periodic boundary conditions

Overview of G-parity calculation (Chris Kelly, Daiqian Zhang)

- Use 32³ x 64 ensemble
 - 1/a = 1.3784(68) GeV, L = 4.53 fm.
 - 216 configurations separated by 4 time units
 - 900 low modes for all-to-all propagators
 - Solve for $\pi\pi$ and kaon sources on each of 64 time slices

$\Delta I = \frac{1}{2} K \rightarrow \pi \pi - \text{above threshold}$ (Chris Kelly & Daiqian Zhang)

- **G-parity** BC give p_{π} = 205 MeV (Changhoan Kim, hep-lat/0210003)
 - $G = C e^{i\pi ly} \qquad \begin{pmatrix} u \\ d \end{pmatrix} \rightarrow \begin{pmatrix} \overline{d} \\ -\overline{u} \end{pmatrix}$
 - Extra I = 1/2, **s'** quark adds $e^{-m_{\kappa}L}$ error.
 - Tests: f_{κ} and B_{κ} correct within errors.
- Physical kinematics:
 - $M_{\pi} = 143.1(2.0)$
 - $M_{K} = 490.6(2.2) \text{ MeV}$
 - $E_{\pi\pi} = 498(11) \text{ MeV}$

→ā		u →
\overline{d}^{π^+}	$u\bar{d}^{\pi^+}$	đ

$I = 0, \ \pi\pi - \pi\pi$ correlator

- Determine normalization of $\pi\pi$ interpolating operator
- Determine energy of finite volume, I = 0, $\pi\pi$ state: $E_{\pi\pi} = 498(11)$ MeV
- Determine *I* = 0 ππ phase shift: δ₀ = 23.8(4.9)(2.2)°
- Phenomenological result: $\delta_0 = 38.0(1.3)^\circ$ [G. Colangelo]

$\Delta I = \frac{1}{2} K \rightarrow \pi \pi$ matrix elements

- Vary time separation between H_W and $\pi\pi$ operator.
- Show data for all $K H_W$ separations $t_Q t_K \ge 6$ and $t_{\pi\pi} t_K = 10, 12, 14, 16$ and 18.
- Fit correlators with $t_{\pi\pi}$ $t_Q \ge 4$
- Obtain consistent results for $t_{\pi\pi}$ $t_Q \ge 3$ or 5

USQCD: All-Hands 4/28/2017 (34)

G-Parity 2015 Results and Outlook

- $\text{Re}(\varepsilon'/\varepsilon) = (1.38 \pm 5.15_{\text{stat}} \pm 4.59_{\text{sys}}) \times 10^{-4}$
 - Expt.: (16.6 ± 2.3) x 10⁻⁴ (2.1 σ difference)
- Substantial improvements underway
 - Use step-scaling to reduce operator normalization error:
 - $15\% \rightarrow 8\%$ (C. Kelly, Lattice 2016)
 - Add suppressed G₁ operator (G. McGlynn)
 - − Increase statistics: 216 \rightarrow 1000+
 - Implement EOFA 4x speed-up (David Murphy)
 - Now with 635 new configurations (Blue Waters, BNL, Dirac, KEK, Mira, RBRC, USQCD)
 - 195 new measurements (Cori I & II → BNL KNL)
 - ALCC proposal: 1.2K, 24^3x64 , 1/a=1.0 GeV, meas'nts.
 - Requesting 17M BG/Q hrs and 70% of zero-priority time.
 USQCD: All-Hands 4/28/2017 (35)

Periodic Boundary Conditions

- New USQCD proposal (T. Blum PI)
- Exploit methods of Jlab & Trinity groups
 - Multiple sources
 - Non-zero cm momenta
 - GEVP analysis
- Explore many $\pi\pi$ energies, interpolate to $E_{\pi\pi} = M_{\kappa}$.
- Initial, exploratory proposal:
 - 24³ x 64, 1/*a*=1.0 GeV, *L*= 4.7 fm, physical masses
 - $\pi\pi$ scattering and $K \rightarrow \pi\pi$ and on 100 configurations
 - Use highly optimized Grid KNL code now running on Cori II
 - Request 63 M J/psi hours on Jlab KNL cluster.
- Important opportunity to develop & test new methods

The Future

- Early science time on Aurora:
 - New 2+1+1 ensembles with 1/a = 3 & 4 GeV
 - Allow 5% calculations with charm:
 - ΔM_{K} a potential source of new physics
 - Long distance parts of $K \rightarrow \pi \ v \ \overline{v}$ and ε_{K}
- Increase accuracy of $K \rightarrow \pi\pi$ and ϵ'
 - Use Aurora for "small" 48³ and 64³ $K \rightarrow \pi\pi$ jobs
 - Use position-space NPR to cross charm threshold non-perturbatively (Masaaki Tomii)
 - Move $K \rightarrow \pi\pi$ calculations to N_f =4, include charm and GIM
 - Include E&M and m_u - m_d corrections.