Taming quark chromoEDM contribution to the neutron EDM

Tanmoy Bhattacharya Vincenzo Cirigliano Rajan Gupta Yong-Chull Jang Huey-Wen Lin Boram Yoon

Aprin 28, 2017

Tanmoy Bhattacharya nEDM from qCEDM

Form Factors Phase convention BSM Operators

Introduction Form Factors

Vector form-factors Dirac F_1 , Pauli F_2 , Electric dipole F_3 , and Anapole F_A Sachs electric $G_E \equiv F_1 - (q^2/4M^2)F_2$ and magnetic $G_M \equiv F_1 + F_2$

$$\begin{split} \langle N | V_{\mu}(q) | N \rangle &= \overline{u}_{N} \left[\gamma_{\mu} F_{1}(q^{2}) + i \frac{[\gamma_{\mu}, \gamma_{\nu}]}{2} q_{\nu} \frac{F_{2}(q^{2})}{2m_{N}} \right. \\ &+ \left(2i \, m_{N} \gamma_{5} q_{\mu} - \gamma_{\mu} \gamma_{5} q^{2} \right) \frac{F_{A}(q^{2})}{m_{N}^{2}} \\ &+ \frac{[\gamma_{\mu}, \gamma_{\nu}]}{2} q_{\nu} \gamma_{5} \frac{F_{3}(q^{2})}{2m_{N}} \right] u_{N} \end{split}$$

- The charge $G_E(0) = F_1(0) = 0$.
- $G_M(0)/2M_N=F_2(0)/2M_N$ is the (anomalous) magnetic dipole moment.
- $F_3(0)/2m_N$ is the electric dipole moment.
- F_A violates PT; F₃ violates CP.

Form Factors Phase convention BSM Operators

Introduction

Phase convention

- Theory does not have P symmetry,
- but asymptotic In and Out states do.
- Not necessarily implemented by γ_0 .

In fact,

$$\Sigma \cdot F \propto \begin{pmatrix} \sigma \cdot B & i \sigma \cdot E \\ i \sigma \cdot E & \sigma \cdot B \end{pmatrix} \,,$$

which is $\sigma \cdot B$ in the rest frame only if $(i \not p + m) = 0$. Previous calculations had missed this effect: including it reduces the signal.

Form Factors Phase convention BSM Operators

Introduction BSM Operators

Standard model CP violation in the weak sector.

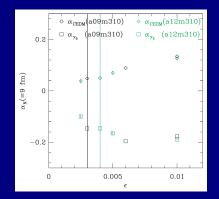
Strong CP violation from dimension 3 and 4 operators anomalously small.

- Dimension 3 and 4:
 - CP violating mass $\bar{\psi}\gamma_5\psi$.
 - Toplogical charge $G_{\mu\nu}\tilde{G}^{\mu\nu}$.
- Suppressed by $v_{\rm EW}/M_{\rm BSM}^2$:
 - Electric Dipole Moment $\bar{\psi}_{\Sigma_{\mu\nu}}\tilde{F}^{\mu\nu}_{\mu\nu}\psi$.
 - Chromo Dipole Moment $\bar{\psi} \Sigma_{\mu\nu} \tilde{G}^{\mu\nu} \psi$.
- Suppressed by $1/M_{\rm BSM}^2$:
 - Weinberg operator (Gluon chromo-electric moment): $G_{\mu\nu}G_{\lambda\nu}\tilde{G}_{\mu\lambda}$.
 - Various four-fermi operators.

Three-point function Two-point function Disconnected diagrams

Lattice Calculation

The chromoEDM operator is dimension 5. Uncontrolled divergences unless $\epsilon \lesssim 4\pi a \Lambda_{\rm QCD} \sim 1$. Need to check linearity.


Tanmoy Bhattacharya

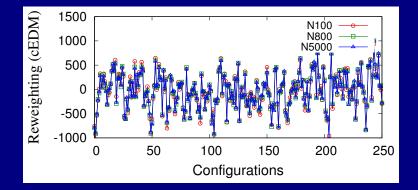
nEDM from qCEDM

Three-point function Two-point function Disconnected diagrams

Lattice Calculation Two-point function

Find asymptotic Parity operator: $e^{i\alpha\gamma_5}\gamma_0$ from two-point function.

Preliminary; Connected Diagrams Only


Tanmoy Bhattacharya

nEDM from qCEDM

Three-point function Two-point function Disconnected diagrams

Lattice Calculation

Disconnected diagrams

Also calculate disconnected contribution to flavor diagonal (isoscalar) charges.

Tanmoy Bhattacharya nED

nEDM from qCEDM

Agreement between groups Spatial versus Temporal

SPC questions Agreement between groups

Ensembles	PNDME	CalLAT	χ QCD
a12m310	1.229(14)	1.237(07)	1.22(4)
a12m220S	1.270(40)	1.272(28)	
a12m220	1.240(32)	1.259(15)	
a12m220L	1.255(16)	1.252(21)	
a09m310	1.231(33)	1.258(14)	1.21(3)

Tanmoy Bhattacharya nEDM from qCEDM

Agreement between groups Spatial versus Temporal

SPC questions Spatial versus Temporal

$\bar{\psi}\gamma_5\sigma_{\mu\nu}\stackrel{\leftrightarrow}{D}_{\nu}\psi\propto\bar{\psi}\gamma_5\gamma_{\mu}(D-m)\psi+m\bar{\psi}\gamma_5\gamma_{\mu}\psi$

- The first contributes $O(a^2)$ except for contact terms.
- The second is a mass dependent renormalization.
- We use space component and assign 2–3% for $O(a^2)$.
- Our estimates agree.

Request

Conclusions Request

- Analyze $32^3 \times 96$ a09m310
- Disconnected diagrams
- cEDM and Quark bilinears
 - Axial form factors
 - Vector form factors
 - Flavor diagonal scalar and tensor charges

43M Jpsi core hours.