High-Statistics Calculation of Nucleon Structure and Matrix Elements on Isotropic Clover Lattices

Combined LHP & NME Proposal

LHP: S.Syritsyn(PI), J.Green, M.Engelhardt, N.Hasan, S.Krieg, J.Negele, S.Meinel, A.Pochinsky

NME: R.Gupta(PI), T.Bhattacharya, V.Cirigliano, B.Joo, H.-W.Lin, D.Richards, F.Winter, B.Yoon,

(|LHP⟩ + |NME⟩): K.Orginos

USQCD All-Hands Meeting, Fermilab
May 1-2, 2015
Nucleon Structure with Isotropic Wilson Lattices

Goal: Compute Nucleon Structure and Quark Matrix Elements with high statistical precision and robust control of systematic errors

Wilson fermions are economical and permit

- higher statistics for better precision and noisy observables (TMDs, GPDs)
- experiments with newer techniques
 - controlling excited states
 - computing disconnected diagrams
 - exploring hadron states with high momentum

JLab Isotropic clover-improved Wilson lattices:

<table>
<thead>
<tr>
<th>ID</th>
<th>a[fm]</th>
<th>Volume</th>
<th>m_π</th>
<th>$m_\pi L$</th>
<th>Traj. available</th>
<th>Conn. cost per conf.[NMEp]</th>
<th>%%</th>
</tr>
</thead>
<tbody>
<tr>
<td>D4</td>
<td>0.085</td>
<td>323x64</td>
<td>400</td>
<td>5.5</td>
<td>5100</td>
<td>500</td>
<td>~20%</td>
</tr>
<tr>
<td>D5</td>
<td>0.081</td>
<td>323x64</td>
<td>300</td>
<td>4.0</td>
<td>2600</td>
<td>825</td>
<td>~20%</td>
</tr>
<tr>
<td>D6</td>
<td>0.080</td>
<td>483x96</td>
<td>190</td>
<td>3.7</td>
<td>700</td>
<td>7,125</td>
<td>~20% Systematics study [NMEp]</td>
</tr>
<tr>
<td>D7</td>
<td>0.080</td>
<td>643x128</td>
<td>190</td>
<td>4.9</td>
<td>900 (++ by 07/01)</td>
<td>32,055</td>
<td>~80% proposed in [LHPp]</td>
</tr>
<tr>
<td>D8</td>
<td>0.080</td>
<td>643x128</td>
<td>140</td>
<td>4.1</td>
<td>Started</td>
<td>Next Year (hopefully)</td>
<td>~80% Systematics study [NMEp]</td>
</tr>
</tbody>
</table>
Nucleon Structure Scientific Objectives

In the Joint proposal, we will study (topics as expressed by in the initial proposals)

<table>
<thead>
<tr>
<th>LHP (before’15 : DWF with RBC)</th>
<th>NME (before’15 : Wilson on HISQ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector (EM) Form Factors $G_{E,M}$ (including high momenta Q^2) and Radii $(r_{E,M}^p,n)$</td>
<td></td>
</tr>
<tr>
<td>Axial Vector Form Factors $G_{A,P}$ and Axial Coupling g_A</td>
<td></td>
</tr>
<tr>
<td>Scalar and Tensor Charges $(g_{S,T})^{u-d}$</td>
<td></td>
</tr>
<tr>
<td>Generalized Form Factors, Moments of PDFs, Nucleon Spin</td>
<td>Quark (chromo)EDM-induced nEDM</td>
</tr>
<tr>
<td>Ordinary and Transverse Momentum-Dependent Parton Distributions</td>
<td></td>
</tr>
</tbody>
</table>

Wilson Fermions will make affordable

<table>
<thead>
<tr>
<th>Variational analysis of Exc. States</th>
<th>Study dep. on a, L, m_π (≥ 190 MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Including Disconnected (light & strange) Quark Contractions</td>
</tr>
</tbody>
</table>

S. Syritsyn (LHP), R. Gupta (NME)
Nucleon “Charges” $g_{A,S,T}$

[*(P)N(D)ME, Lattice’14]*

- $g_{S,T}$ “charges” = couplings to BSM physics in precision meas. of β-decay [LANL]
- Clover-improved Wilson valence quarks on HISQ lattices
- Extrapolation in a, L, m_π: $g(a, m_\pi, L) = g^0 + \alpha a + \beta m_\pi^2 + \gamma e^{-m_\pi L}$
Scientific Objectives

Nucleon Vector (EM) Form Factors

\[\langle P + q | \bar{q} \gamma^\mu q | P \rangle = \bar{U}_{P+q} \left[F_1(Q^2) \gamma^\mu + \frac{F_2(Q^2)}{2M_N} i \sigma^{\mu\nu} q_\nu \right] U_P \]

- Form Factors: \((F_1 / F_2)\) scaling, \((G_E / G_M)\), \(u-, d\)-contributions

\[m_\pi = 149 \text{ MeV data vs Phenomenology} \ [J.\text{Green et al}(LHP), \text{PRD90:074507}(2014)] \]

- Proton radius: 7σ difference; JLab pRAD, MUSE \((e^\pm, \mu^\pm-p)\)

\[\text{(Nature) } \]

\[\text{(Scientific American) } \]

\[\text{(The Proton Problem) } \]
Nucleon Axial Form Factors

\[\langle P + q | \bar{q} \gamma^\mu \gamma^5 q | P \rangle = \bar{U}_{P+q} \left[G_A(Q^2) \gamma^\mu \gamma^5 + \frac{G_P(Q^2) \gamma^5 q^\mu}{2M_N} \right] U_P \]

- \(G_A(Q^2) \) are measured in \(\nu \)-scattering, \(\pi \)-production;
 - implications for neutrino flux norm. in IceCube, etc
- Axial radius \((r_A^2) = \frac{12}{m_A^2} \): model dependence
 - varying nuclear / \(G_A \) shape models: \(m_A = 0.9 \ldots 1.4 \text{ GeV} \)
- Strange quark \(G_{sA,P}(Q^2) \): MiniBooNE
- \(G_P(Q^2) \) induced pseudoscalar: \(\mu \) capture (MuCAP)

Physical \(m_\pi \), chiral quarks [LHP & RBC collabs, Lattice’14]
Nucleon Gen. F.F.s and Nucleon Spin

\[\langle N(p + q) | T_{\mu\nu}^{q,\text{glue}} | N(p) \rangle \rightarrow \left\{ A_{20}, B_{20}, C_{20} \right\} (Q^2) \]

\[\langle x \rangle_q = A_{20}^q(0) \]

\[J_{q,\text{glue}} = \frac{1}{2} \left[A_{20}^{q,\text{glue}}(0) + B_{20}^{q,\text{glue}}(0) \right] \]

\[J_{\text{glue}} + \sum_q J_q = \frac{1}{2}, \]

\[J_q = \frac{1}{2} \Delta \Sigma_q + L_q \]

\[\frac{1}{2} \Delta \Sigma_{u+d}, \Sigma_{u+d} \]

\[J_{u,d} \]

\[J_{u,d, \Sigma_{u+d}} \]

\[\text{discrepancy with } \chi\text{QCD result for } L_{u+d} \]

\[\text{disconnected contributions are not included} \]
Scientific Objectives

Nucleon Structure with Wilson Clover Lattices

USQCD All-Hands Meeting, Fermilab, May 1 & 2

Transverse Momentum-Dependent Distributions

SIDIS

\[
l + N(P) \rightarrow l' + N(P_h) + X
\]

Non-local lattice operator

\[
\Phi(b, P, S, \hat{\zeta}, \mu) = \frac{1}{2} \langle P, S | \bar{q}(0) \Gamma U(\eta v, b) q(b) | P, S \rangle
\]

with spacelike link path \(U = \)

probes \(k_\perp\)-moments (“shifts”) of TMDs

\[
\sim \int dx \int d^2 k_\perp k_i f(x, k_\perp)
\]

valence DWF on Asqtad

[B. Musch, P. Hägler, M. Engelhardt, J. Negele, A. Schäfer]

“light-cone” limit

\[
\hat{\zeta} = \frac{P \cdot v}{m_N |v|} \rightarrow \infty
\]

operator localized at Euclidean time \(\tau\)

Sivers–Shift, \(u–d\) – quarks

\[
m_{\Pi} f_1^{u,d}(0) / f_1
\]

\[
\hat{\zeta} = 0.39,
|b_T| = 0.36 \text{ fm},
m_{\pi} = 518 \text{ MeV}
\]

DY

SIDIS

\(\eta |v| \) (lattice units)
Calculation Details and Improvements

- Kinematics to access high-momentum form factors:
 - include $|p_{\text{sink}}| \sim 1 \text{ GeV}^2$ (up to $Q^2 \sim 4 \text{ GeV}^2$ in Breit frame)
 - TMDs also require high momentum in-,out-states $|p_{\text{sink}}| = |p_{\text{source}}|$

- Variational method to reduce excited states:
 - 2x2 nucleon correlators with varied source smearing
 - optimize nucleon operators both zero/low and high momentum states

- Improved sampling with *All-Mode-Averaging*:
 - exact low-mode deflation OR truncated multigrid solver
 - ~4,000 (exact+sloppy) samples for the lightest $m_{\pi}=190 \text{ MeV}$

- Disconnected quark loops (light and strange) with variance reduction:
 - hierarchical probing
 - low-eigenmode deflation
Nucleon Excited States and SNR

Stochastic noise grows rapidly with T, especially with light pions [Lepage’89]:

$$\text{Signal} \quad \langle N(T)\bar{N}(0) \rangle$$
$$\text{Noise} \quad \langle |N(T)\bar{N}(0)|^2 \rangle - |\langle N(T)\bar{N}(0) \rangle|^2$$

$$\text{Signal/Noise} \quad \sim e^{-M_N T} \quad \sim e^{-3m_\pi T} \quad \sim e^{-(M_N - \frac{3}{2}m_\pi) T}$$

Physical point: SNR $\sim x(1/2)$ every (2a)

Multi-exp. fits of T-dependence : determined by the largest T

Variational method: $(-)$expensive $\sim (N_{op})^2$, $(+)$greatly extend plateaus [CSSM]

Proposal: explore and compare cost / benefit variational vs traditional
Disconnected Quark Contractions

Hierarchical probing [K.Orginos, A.Stathopoulos, ’13]:
In sum over 2^{dk+1} vectors (d=3),
dist(x,y) ≤ 2^k terms cancel exactly:

$$1 \leq \sum_{a} |x_a - y_a| \leq 2^k : \quad \frac{1}{N} \sum_{i} z_i(x)z_i(y)^\dagger \equiv 0$$

$$z_i \xrightarrow{a} z_i \odot \xi , \quad \xi(x) = \text{random } \mathbb{Z}_2\text{-vector}$$

NEW: reduce variance by treating low modes of $(\hat{D}^\dagger \hat{D})$ exactly [K.Orginos et al]

Disconnected diagrams with JLab isotropic Clover [S.Meinel’s USQCD project ’13; in prep.]
Total Request for the Joint Proposal

Computing resources request was updated to reflect non-overlapping goals in the proposals:

- LHP requested 43M
- NME requested 47M

Computing resources request was updated to reflect non-overlapping goals in the proposals:

- [common] connected and disconnected 3pt correlators on the lightest pion ensemble $m_\pi=190$ MeV: **32.8M**
- [NMEp] calculations with the heavier pion masses: **+8.2M**
- [LHPp] additional contractions (GFFs, TMDs) the lightest pion ensemble: **+9.5M**
- [common] exploration of variational method and source tuning: **+6M**

Total combined request: **56.5M**
Summary

- High-statistics, high precision nucleon structure calculations with very wide scope
 - proton form factors and charge radius
 - proton spin puzzle
 - applications to BSM and CPV searches
 - parton distributions

- Exploration of new techniques crucial for calculations at the physical point

- Equal emphasis on Connected andDisconnected (Light and Strange) contributions to the nucleon structure

We are hopeful that the USQCD will support not only this proposal, but also generation of physical point Wilson-clover lattices
Even though we are not requesting resources for lattice generation, we show the performance of the Multi-Grid library on NCSA BlueWaters in Fig. 7 (left) using QDP-JIT+QUDA. We show the performance of the Multi-Grid library on NCSA BlueWaters in Fig. 7 (left) using QDP-JIT+QUDA. The strong-scaling performance of the Algebraic Multi-Grid algorithm from the QDP-MG library on NCSA BlueWaters and comparison to performance on GPUs. (right) Improvement in lattice generation cost on Titan Nodes (GPUs).