LQCD Computing at BNL

2012 USQCD All-Hands Meeting Fermilab May 4, 2012

> Robert Mawhinney Columbia University

Some BNL Computers

8k QCDSP nodes 400 GFlops at CU 1997-2005 (Chulwoo, Pavlos, George, among others)

12k QCDSP nodes 600 GFlops (Peak) at BNL 1998-2005

QCDOC at BNL: 2005 to 2011

NYBlue at BNL: 2008 to?

- 18 racks of BG/L
- 2 racks of BG/P
- 440 TByte DDN disk system
- ~0.3 PByte tape silo -scalable
- Broad science focus, but also heavily used for LQCD

LQCD tasks

- Generation of ensembles requires many cores applied to evolution
 - * Serial calculation need one long Markov chain
 - * Need enough cores to produce ensemble in reasonable time
 - * Need to know machine is reliably doing arithmetic
- Measurements generally possible by divide-and-conquer. Some exceptions:
 - * For disconnected quark loop diagrams, gauge noise is very large
 - * Dilution/reduction/all-to-all techniques on large volumes can measure all possible fermion correlators efficiently, but can require many eigenvectors
 - * Calculation of many eigenvectors is CPU intensive and I/O times to write to disk can be prohibitive
 - * One strategy: keep in memory on large machine, calculate eigenvectors, use for a wide range of fermionic contractions and delete.
 - * Example: RBC $K \to \pi\pi$ using EigCG for disconnected diagram calculations. Store 5d DWF propagators, requires 4 TBytes of machine memory for $32^3 \times 64 \times 32$ volumes.
- Argues for USQCD access to tightly coupled, large machines

BGQ

- Each rack: 200 TFlops (peak), 1024 nodes (16k cores), 100 kW (max)
- http://www-03.ibm.com/systems/deepcomputing/solutions/bluegene/

Processor	IBM PowerPC® A2 1.6 GHz, 16 cores per node		
Memory	16 GB SDRAM-DDR3 per node (1333 MTps)		
Networks	5D Torus — 40 GBps; 2.5 µsec latency		
	Collective network—part of the 5D Torus; collective logic operations supported		
	Global Barrier/Interrupt - part of 5D Torus		
	PCIe x8 Gen2 based I/O		
	1 GB Control Network— System Boot, Debug, Monitoring		
I/O Nodes (10 GbE or InfiniBand)	16-way SMP processor; configurable in 8,16 or 32 I/O nodes per rack		
Operating systems	Compute nodes—lightweight proprietary kernel		
Performance	Peak performance per rack—209.7 TFlops		
Power	Typical 80 kW per rack (estimated) 380-415, 480 VAC 3-phase; maximum 100 kW per rack 4×60 amp service per rack		
Cooling	90 percent water cooling (18°C - 25°C, maximum 30 GPM); 10 percent air cooling		

Blue Gene/Q packaging hierarchy

3. Compute Card One single chip module, 16 GB DDR3 Memory

2. Module Single Chip

1. Chip 16 cores

4. Node Card 32 Compute Cards,

Optical Modules, Link Chips,

5b. I/O Drawer 8 I/O Cards 8 PCIe Gen2 slots

6. Rack 2 Midplanes 1, 2 or 4 I/O Drawers

7. System 20PF/s

5a. Midplane 16 Node Cards

BGQ at Top of Green 500 List (Nov. 2011)

- BGQ built from the beginning to produce many MFlops per watt
- Reliability for very large systems important
 - * BGQ designed with error detection and correction on internode serial links, memory, and all major internal arrays and buses
 - * Extra processor core on each node assists with reporting of any errors

Green500 Rank	MFLOPS/W	Site*	Computer*	Total Power (kW)
1	2026.48	IBM - Rochester	BlueGene/Q, Power BQC 16C 1.60 GHz, Custom	85.12
2	2026.48	IBM Thomas J. Watson Research Center	BlueGene/Q, Power BQC 16C 1.60 GHz, Custom	85.12
3	1996.09	IBM - Rochester	BlueGene/Q, Power BQC 16C 1.60 GHz, Custom	170.25
4	1988.56	DOE/NNSA/LLNL	BlueGene/Q, Power BQC 16C 1.60 GHz, Custom	340.50
<u>5</u>	1689.86	IBM Thomas J. Watson Research Center	NNSA/SC Blue Gene/Q Prototype 1	38.67
<u>6</u>	1378.32	Nagasaki University	DEGIMA Cluster, Intel i5, ATI Radeon GPU, Infiniband QDR	47.05
7	1266.26	Barcelona Supercomputing Center	Bullx B505, Xeon E5649 6C 2.53GHz, Infiniband QDR, NVIDIA 2090	81.50
8	1010.11	TGCC / GENCI	Curie Hybrid Nodes - Bullx B505, Nvidia M2090, Xeon E5640 2.67 GHz, Infiniband QDR	108.80
9	963.70	Institute of Process Engineering, Chinese Academy of Sciences	Mole-8.5 Cluster, Xeon X5520 4C 2.27 GHz, Infiniband QDR, NVIDIA 2050	515.20
<u>10</u>	958.35	GSIC Center, Tokyo Institute of Technology	HP ProLiant SL390s G7 Xeon 6C X5670, Nvidia GPU, Linux/Windows	1243.80

BGQ Systems

- Sequoia at LLNL
 - * 96 racks, 20 PFlops peak
- Mira at the ALCF (Argonne)
 - * 48 racks, 10 PFlops peak
 - * USQCD applying for INCITE time
- Julich (Germany)
 - * 6 racks by June 2012
 - * "considerable extension in October"
- KEK (Japan)
 - * 6 racks, 3 by October 2012
- Cineca (Italy
 - * 10 racks, August 2012

BGQ at BNL

- BNL currently has 3+ racks of preproduction BGQ hardware
 - * 1 rack is owned by BNL
 - * 2 complete racks are owned by the RIKEN-BNL Research Center (RBRC)
 - * A fourth partially populated RBRC rack will be used to hold a few small BGQ partitions for code development and testing.

Status of BGQ at BNL

• All 3 racks online, running jobs and being debugged

• BNL DD2:

- * Brought up first and now running many days between service interruptions.
- * Still in burn in mode running DWF evolution to do physics and stress machine

• RBRC DD1

- * One rack (R00) running as 1024 node partition with DWF evolution for burn in
- * Second rack (R01) is 512 node partition plus four 128 node partitions
- * Partitions on second rack are available for code development and debugging
- * 5 USQCD members (Detar, Joo, Pochinsky, Fleming, Osborn) have been authorized to get access to the DD1 racks for code development/testing.
- * Still frequent hardware issues and a few outstanding problems bringup ongoing
- Awaiting software from IBM for front-end nodes current users running on service node. No batch queue presently share and communicate via email.
- Tests of I/O system performance to be done in near future.

BGQ Infrastructure at BNL

- BNL has cooling and power in place for 4 BGQ racks
 - * Cooling exists for a 5th full rack, transformer required (~\$50k) for power
 - * Partial RBRC rack can likely be powered more cheaply if another full rack is purchased.
- Existing BNL service node, front end node and shared HMC (hardware management console) can drive another BGQ rack (~ \$80k infrastructure requirement that already exists).
- Can handle up to eight 10 GigE I/O links from USQCD rack to existing DDN storage with existing infrastructure
 - * Have upgraded some tiers of disks in DDN system from 250 GByte to 2 TByte
 - * Existing system could go to 2.5 PBytes except some tiers do not recognize 2 TByte disks
 - * Likely a firmware revision issue, but not understood at present. Personnel too busy with BGQ bringup.
- Existing tape silo can be upgraded on demand licenses. Can increase capacity as needed, if we want to spend the money.
- BGQ project has inherited substantial infrastructure from NYBlue.

QCD Performance on BGQ

- Peter Boyle (University of Edinburgh) played a major role in designing the BGQ L1 prefetcher and his QCD code was used extensively in the debugging BGQ hardware.
- Each node has 16 cores and up to 4 hardware threads per core
 - * Boyle's code, written with his code generation tool BAGEL, uses 64 threads/core
 - * In full double precision conjugate gradient solves for Domain Wall Fermions (DWF) currently sustain 42.5 GFlops per node for $8^4 \times 8$ local volumes
 - * Boyle has a single precision solver and Chulwoo Jung (BNL) is using it in a defect correction solver scheme to achieve a full double precision result. The performance is expected to go above 50 GFlops.
- Assume BGQ rack is \$2-3 M range and performance of 50 GFlops/node
 - * \$2M price gives 0.039 \$/MFlop
 - * \$3M price gives 0.059 \$/MFlop
- Chroma code can readily use Boyle's assembly, with only minor addition of clover term required
- MILC code being optimized via SciDAC libraries. Much work to be done
- USQCD will need highly optimized codes for INCITE requests at ALCF

DWF Scaling on BGQ

Strong Scaling of BAGEL DWF CG Inverter on 64⁴ volume

Tests were performed with the STFC funded DiRAC facility at Edinburgh

Weak Scaling for BAGEL DWF CG Inverter

Tests were performed with the STFC funded DiRAC facility at Edinburgh

Summary

- BNL has successfully managed QCDSP, QCDOC, BG/L, BG/P and now BG/Q
- Unique opportunity for USQCD to get up to 1 rack of BGQ for dedicated usage about 50 TFlops of performance for optimized QCD codes
 - * The RBC collaboration is thermalizing a 2+1 flavor, $48^3 \times 96 \times 32$, $(5.5 \text{ fm})^3$ domain wall fermion ensemble, with physical pions, on 1 rack of BG/Q.
- This computing power comes with a powerful network for tightly-coupled parallelism
- BNL infrastructure in place to support a USQCD rack small costs beyond rack itself
- Code optimizations well underway via USQCD SciDAC support
- Will support USQCD evolution and measurement jobs that may be too small or specialized for inclusion in an INCITE proposal.
- In 2012, USQCD has an INCITE allocation on ALCF BG/P of 50 M core-hours = 17 BG/P rack/months = 3.5% of ALCF BG/P resources
- If USQCD gets 3.5% of ALCF, 48 rack BG/Q via INCITE this is 1.7 BG/Q racks
- A 1 rack BGQ at BNL is a substantial addition to the BGQ INCITE resources, at historical levels of support for USQCD.