Lattice meets Experiment: BSM

Adam Martin (<u>aomartin@fnal.gov</u>)

‡ Fermilab

USQCD all hands meeting, Fermilab May 4th, 2012

synopsis of the interplay between lattice and BSM phenomenology/experiment

Lattice Meets Experiment 2011: Beyond the Standard Model

US Lattice Quantum Chromodynamics

the natural setting for lattice in BSM is new TeV-scale strong dynamics

wait... Technicolor?!?!

Nima Arkani-Hamed, Madrid 12/16/11

wait... Technicolor?!?!

Nima Arkani-Hamed, Madrid 12/16/11

why so skeptical? as a wise experimentalist told me...

why so skeptical? as a wise experimentalist told me...

be wary of peaks if you also see them with the graph upside-down

why so skeptical? as a wise experimentalist told me...

be wary of peaks if you also see them with the graph upside-down

... so lets not get carried away

on a more serious note

Higgs boson is not discovered yet

<u>if it is:</u> **composite** or fundamental?

if it isn't: what is there?

<u>on a more serious note</u>

<u>on a more serious note</u>

umm.. where <u>are</u> all those superpartners?

generic problem with new strong dynamics,

how do you get the physics you want from new dynamics without side effects?

want: W/Z masses, fermion masses, CKM

don't want: **flavor** precision electroweak **EDMS** proton decay $\frac{(\bar{f}f)(\bar{f}f)}{\Lambda^2}$

(near) conformal gauge theory -> separates scales

BSM lattice has focused on studying this scenario

(near) conformal gauge theory -> separates scales

(Lane, Appelquist & Sannino)

BSM lattice has focused on studying this scenario

phase diagram has been the subject of numerous studies

figuring out which techniques work best

phase diagram has been the subject of numerous studies

figuring out which techniques work best

ex.) anomalous dimension of $\langle \overline{\psi} \psi \rangle$

ex.) anomalous dimension of $\langle \overline{\psi} \psi \rangle$

ex.) anomalous dimension of $\langle \overline{\psi} \psi \rangle$

what is γ_m in near conformal theories?

ex.) anomalous dimension of $\langle \overline{\psi} \psi \rangle$

 $N_F = 10$, indications of $\gamma_m \sim O(1)$ (N. Yamada)

can have Λ that satisfy flavor constraints, while generating realistic fermion masses

precision electroweak parameters:

if TeV-scale dynamics is QCD-like, expect S~0.3

indications that S (per EW doublet) can be small

points the way for model-building:

 1 chiral EW doublet (all you need)

 N_F-1 vector-like doublets or singlets

and phenomenology:

small S tied to ~restoration of parity doubling in spectra

Other directions

other patterns of chiral symmetry breakdown

we're most familiar with SU(N)xSU(N)->SU(N), but what about SU(N) -> SO(N) or Sp(N)

Other directions

role of four-fermion operators

$$S = \int d^4x \, \bar{\psi} (i\partial \!\!\!/ - A\!\!\!\!/) \psi + \frac{G^2}{2} [(\bar{\psi}\psi)^2 + (\bar{\psi}i\gamma_5\tau^a\psi)^2] - \frac{1}{2g^2} Tr[F_{\mu\nu}F^{\mu\nu}]$$

expected/necessary in all models of BSM strong dynamics

Other directions

technicolor & Dark Matter:

• lightest technibaryon can be stable by analog of $U(1)_B$

- an initial matter/anti-matter asymmetry gets shared among baryons, leptons, technibaryons via sphalerons (Chivukula, Barr, Fahri, Nussinov)
- can get observed Ω_{DM} / Ω_B easily for ~ TeV scale DM

must be electrically neutral, EW singlets to avoid direct detection Then leading operators are charge radius and polarizability:

ex.)
$$\frac{B^* B v_\mu \partial_\nu F^{\mu\nu}}{\Lambda_{TC}^2} , \frac{B^* B F_{\mu\nu} F^{\mu\nu}}{\Lambda_{TC}^3}$$

lattice input?

<u>BSM<->lattice wish list (~few years)</u>

- continue search for best techniques for study of near-CFT (ex.) N_F , N_C phase diagram)
- 0⁺⁺ state? a dilaton associated with approximate scale invariance?
- baryon spectroscopy in non-QCD scenarios
- more complex gauged NJL scenarios

- S-parameter
- WW-scattering, additional coefficients in EW-chiral Lagrangian

<u>Conclusions</u>

- lattice is an invaluable tool to studying viable models of TeV-scale strong dynamics
- focus so far on conformal/near conformal theories difficult problem, still learning which techniques/tools work best
- insight into properties/spectra in these theories

input to model building and collider physics

LOTS TO DO!