
QMT – QCD Multi Threading
• First steps

– Step 1: General Evaluation
• OpenMP vs. Explicit Thread library (Chen)

– Explicit thread library can do better than OpenMP
– OpenMP performance is compiler dependent

» Intel compiler does much better than GCC
– Step 2: Simple Threading API: QMT

• based on older smp_lib (A. Pochinsky)
• use pthreads and investigate barrier synchronisation

algorithms
– Step 3: Evaluate usefulness of QMT in SSE-Dslash
– Step 4: Tweak QMT... Go back to Step 3 until done.

QMT – Basic Threading Model
• 1 Master Thread & several slave

threads spawned when calling
qmt_init()

• Node- Serial part of code runs in
master thread – while slaves sit idle.

• Node-Parallel parts of code run in
master and slave threads
– Data parallel: All threads execute

same function on different data.
– Data blocks described in terms of

first & last site of block.
• Slave threads destroyed by calling

qmt_finalize();

Parallel
sites 0..7

Serial
Code

Parallel
sites 8..15

barrier sync

Thread #0
(Master)

Thread #1
(Slave)

Idle

finalize / thread join

initialize / thread fork

Dslash
• Implemented (re-enabled) threading in SSE Dslash
• Tested on Dual Socket, Dual Core (4 cores in total) Opteron,

64 bit linux.
• Compare 4 threads in 1 MPI process vs 4 MPI processes

communicating through memory.
Global Volume Threaded Performance MPI Performance Threaded/MPI

(sites) Mflops (4 threads) Mflops (4 processes) (gain in favour of threads)

2x2x2x2 1258 1560 0.81

4x4x4x4 6572 6595 1

4x4x8x8 8120 7597 1.07

8x8x8x8 7929 8108 0.98

10x10x8x8 6668 5338 1.25

12x12x12x12 2465 2280 1.08

12x12x24x24 2340 2264 1.03

• On the whole threading seems to help some
• But not a lot... Can we do better?

Future Improvements
• Increase access to local vs remote memory

– eg: interleave memory allocation between processors (libnuma
• If there are leftover cores, but memory bandwidth is exhausted –

use core for something else (comms coprocessor, heater etc)
– need to tweak API.

• Improvements likely to be architecture specific, depending on
things such as
– systems libraries and facilities (eg: libnuma)
– actual node architecture

• hardware memory strategies (number of controllers,
available bandwidth), shared caches & coherency etc.

• Grand Unified Threading Interface will be challenging...

Chroma on BG/L with BAGEL Dslash 1.4.6
• BU BG/L & MIT BG/L – all regressions pass, some 1024 core tests fail at

MIT - following up on this to determine cause of problems.
• Dslash Performance (BU BG/L)

– single node, single core, Vol=4x4x8x8
• Double Prec: 1328 Mflops/core (47% of peak)
• Sloppy (single internal) Prec: 1521 Mflops/core (54% of peak)

– 512 node, 1024 core, Local Vol =4x4x8x8, CPU Grid=8x8x8x2
• Double Prec: 696 Mflops/core (24.8% of peak)
• Sloppy Prec: 869 Mflops/core (31.1% of peak)

• Clover Inversion – in (R)HMC, 512 nodes, 1024 cores, vol=16x16x16x64,
subgrid=8x2x2x8, cpu grid=2x8x8x8, Sloppy Prec, (BU BG/L)
– Chroma Level 2 CG: 312 Mflops/core (11% of peak)
– Chroma Level 2 Multi Shift CG (9 poles): 294 Mflops/core (10.5%)

• Need to try native QMP or QMP-MPI-2-1-7, track problem on MIT machine
convert QDP_BLAS for double hummer if not done already.

