Jefferson Lab Facilities

Chip Watson
Jie Chen, Ying Chen, Balint Joo

Outline

- Compute Resources: 1000 nodes!!!
- Storage: 15 terabytes (and growing)
- Batch System: Torque+Maui
- User Support, Staff increases, Web Reports, ...

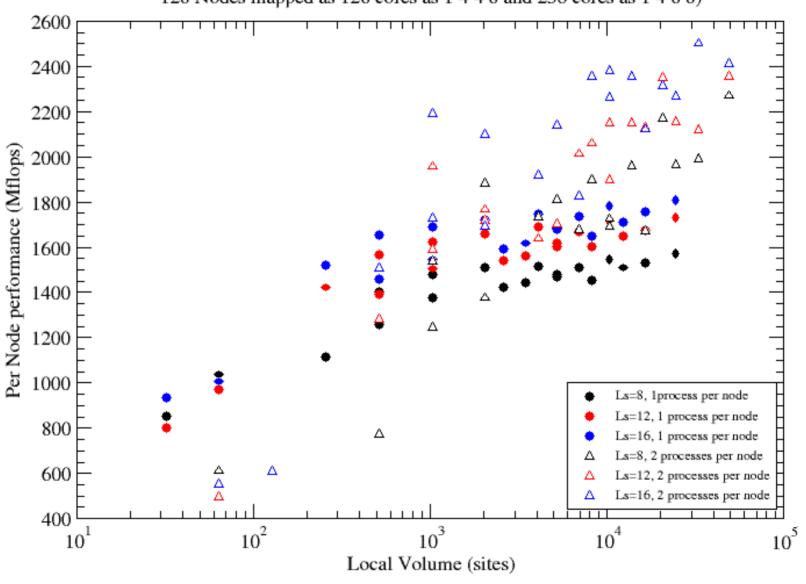
Compute Resources

Newest:

280 node 2006 Infiniband cluster - 6n

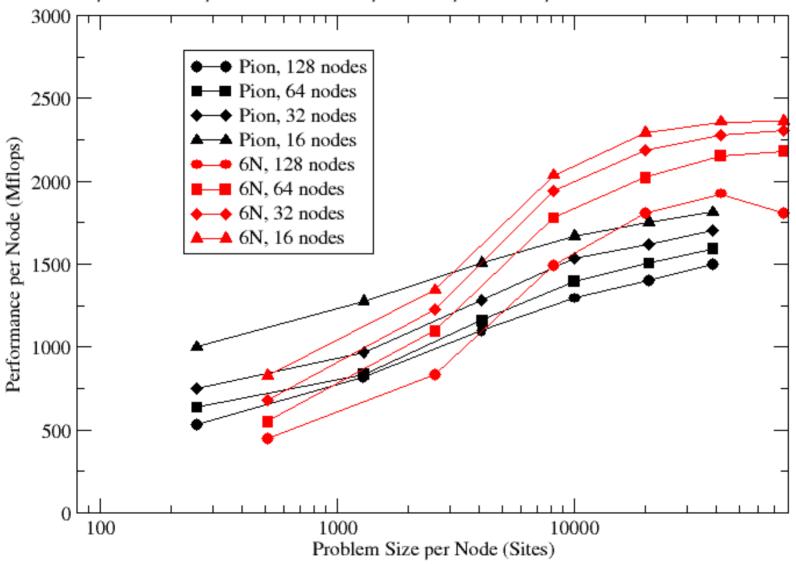
- Dell 850
- 3.0 GHz Pentium-D dual core
- 1 GByte DDR2-667 memory (800 MHz fsb)
- 80 GB SATA disk
- IPMI for node monitoring, control (reboot hung node from home)
- IB 4x cards, 17-18 nodes per leaf switch, core switch built from 5 of 24 port switches (modular and fault tolerant)
- up to 2.5 GFlops / node DWF, 2.3 staggered
- Single job >600 GFlops, \$0.8 / Mflops
- Testing now, operational May 1

6n cluster



Move to dual core

- As part of the SciDAC project, JLab evaluated dual core Pentium D in the Fall as an alternative to the pion clusters single core:
 - same bus speed, slower clock speed at constant price
 - 1 + 1 MB cache vs 2 MB cache
- Naively, one would expect no gain for large problems (memory bandwidth bound)
 - In fact, a significant performance boost found
- No software changes required: just run 2 processes per node
- Additional gains expected from multi-threading


Per Node Performance vs. Local Volume

128 Nodes mapped as 128 cores as 1 4 4 8 and 256 cores as 1 4 8 8)

Comparison of MILC Benchmark on JLab 6N and FNAL Pion Clusters

per node comparison - Jlab runs 2 processes per node=>per node volume = 2*FNAL

New Computer Room

- 7,500 sq ft
 - large enough for 4,000+ nodes (1U)
- 400 KVA UPS
 - 6n cluster uses about 50 kva
- 180 tons A/C
 - supports heat load of ~ 500 Kwatts
- UPS to be upgraded in 2008 (as needed)
- A/C to be upgraded in 2008-2009 (as needed)

gigE Mesh Clusters

- 384 node 4g cluster
 - Dell 2850
 - 7d gigE mesh: 6x2x2x2x2x2x2
 - usually 3 partitions configured as 4x4x8
 - 1/2 GB memory, 667 fsb
 - 40 GB disk, SCSI
 - IPMI
- 256 node 3g cluster
 - Supermicro / whitebox
 - 7d mesh, usually 2 partitions of 4x4x8
 - 1/4 GB memory, 533 fsb
 - 30 GB disk, IDE

Other Compute Resources

- 64 node 2m cluster, myrinet,
 - being de-commissioned
- ~20 gigE test nodes
- 3 interactive nodes
 - drop back to 2 once 2m is de-commissioned
 - dual processor Xeon, 3 GHz, 800 fsb

Tools

- Primarily open source:
 - gcc, make, bison, editors, etc.
- Some Licensed software:
 - Intel C++
 - Soon to add: F90 (user requested), VTune,

Storage

- 5 file servers, 15 terabytes RAID
 - Additional 5+TB server to be added 2Q2006
- /home NFS mounted on all compute nodes
 - backed up by computer center
- /cache NOT mounted, accessed via rcp
 - not backed up; auto-migrate to silo
 - replacement of rcp (script) hides knowledge of where particular file is located (4 servers)
 rcp /cache/project/abc .
- local disks on compute nodes give exceedingly high parallel bandwidth for temporary files

Storage (2)

- Storage Resource Manager symantics
 - user managed storage (pros & cons)
 - policy based management (user controlled)
 - pin / unpin
 - permanent / volatile
 - auto migrate of permanent files to silo (large files) or mirror machine (small files)
 - auto delete of oldest not pinned files
 - 1 Petabyte silo, ~10% usage limit (new silo in FY2007 or FY2008)

Storage Challenges

- Running NFS with 1000 clients is challenging with commodity servers
 - most recently encountered problems popped up when new 6n nodes were built with SELINUX=1 (default on latest RedHat)
- Occassional data corruption
 - being diagnosed, might be a failing RAID controller (only occurs on one server);
 - corruption caught by checksum data validation in Chroma or external tool
 - need better diagnostic tools

Storage Future

- Put file servers onto Infiniband
 - increase aggregate bandwidth several fold
- Plan, as part of SciDAC-2, to investigate other storage systems, incuding dCache
- Parallel file systems (tbd)
- New silo, dedicated drive(s) for LQCD
 - Lab will buy silo, we will buy tapes, probably one drive
- SRM version 2 migration
- ILDG support...

ILDG

- International Lattice Data Grid
 - Grid-of-grids, linking multiple collaborations
 - Plan to go operational June 2006!
 - Major pieces:
 - Metadata XML schema (standardized descriptions)
 - Middleware
- Web services based architecture
 - Metadata Catalog
 - Replica Catalog
 - File access
 - SRM Storage Resource Manager
 - file servers: gridftp, http, ... (multi-protocol)
 - Membership (authorization services) tbd

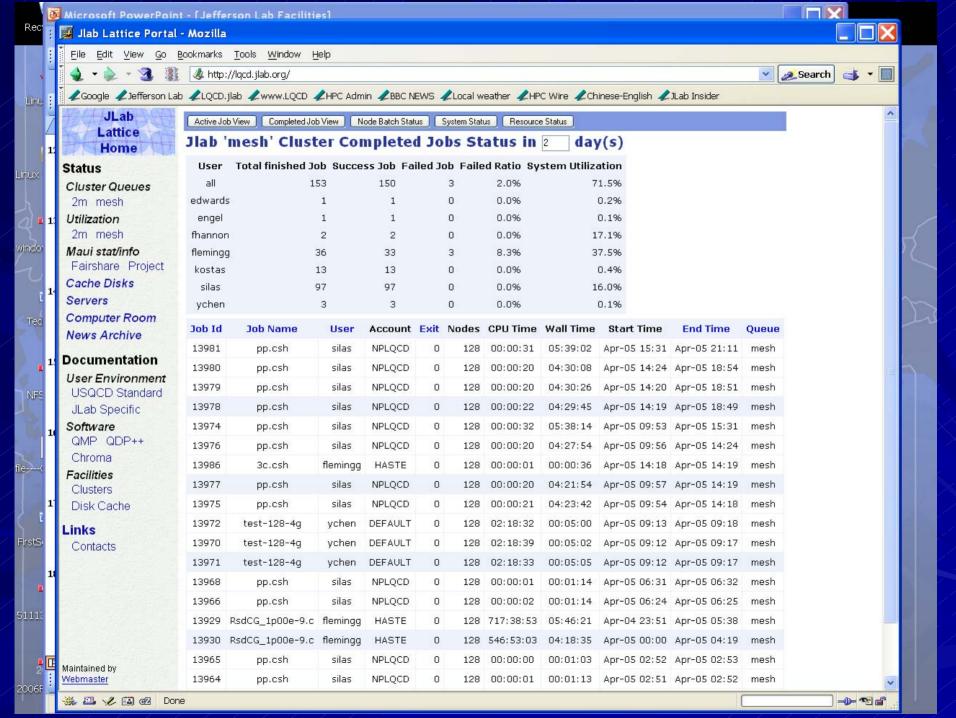
Batch System

- Torque version of Open PBS
- MAUI scheduler (as of Nov 1)
 - SciDAC project based fair share
 - mesh queue for the 5 gigE partitions (640 nodes)
 (most jobs are 128 nodes)
 - ib queue for Infiniband nodes (280 nodes)
 - test queue for extra gigE nodes, single nodes
 - (myrinet not on Maui)
 - user priorities (within their own jobs)

Batch System Challenges

- MAUI has hundreds of parameters
 - we are now using ~20
 - still gaining experience / understanding
 - fair share not exact:
 - MAUI uses fixed time window, not sliding window; large window gives correct long range behavior but poor short range behavior (biggest users dominate near window start); short window gives inaccurate long range behavior
 - 2 jobs starting concurrently can grab more than fair share (doesn't count against you until it completes)

User Support


- Lean staffing, getting better
 - Balint Joo added in Sept 2005 (long visa delay)
 - Hiring additional sysadmin to be shared with computer center (+ ½ FTE)
 - Will add another FTE in FY2007 to support next large cluster

Trouble tickets:

- Soon to release: LQCD web interface to JLab trouble ticket system
- currently, email list accessible from main web page
- good response on work days, poor on weekends
- other plans in development for greater shift coverage

User Support (2)

- Web Interfaces
 - JavaFaces allows rapid creation of new views
 - Data sources:
 - Maui completed jobs database
 - Cluster monitoring (load, memory, node batch state)
- Standard User Environment (future)
 - Eventually make FNAL, JLab, BNL appear "the same" to users
 - file system layout, env variables, batch, ...

SciDAC Project Status

- Most projects are on track for consumption of allocations
- By the end of the first year running period (June 2006) JLab will have delivered more node hours than was scheduled
 - 14 months instead of the 13 months required by the allocations (>12 due to 2m de-commissioning)
 - does NOT include additional running coming from the new 6n cluster (2+ months of friendly user running)