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Introduction to muon g-2

Classical interaction of particle with static magnetic field

V (~x) = −~µ · ~B
The magnetic moment ~µ is proportional to its spin

~µ = g
( e

2m

)
~S

The Landé g-factor is predicted from the free Dirac eq. to be

g = 2

for elementary fermions
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In the quantum (field) theory g receives radiative corrections

qp1 p2 qp1 p2

k

γµ → Γµ(q) =

(
γµ F1(q2) +

i σµν qν

2m
F2(q2)

)

which results from Lorentz invariance and current-conservation
(Ward-Takahashi identity) when the muon is on-mass-shell.

F2(0) =
g − 2

2
≡ aµ

(the anomalous magnetic moment)
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Compute these corrections order-by-order in perturbation theory by expanding
Γµ(q2) in QED coupling constant

α =
e2

4π
=

1

137
+ . . .

Corrections begin at O(α); Schwinger term = α
2π

= 0.0011614 . . .

Hadronic contribution ∼ 6× 10−5 times smaller
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The hadronic light-by-light contribution (O(α3))

The blob contains all possible
hadronic states. Can’t use per-
turbation theory and

No dispersion relation a’la
vacuum polarization

Model estimates put this contri-
bution at about (10−12) ×10−10

with a 30-40% uncertainty

About 60× smaller than hadronic
vac. polarization (O(α2)) contri-
bution and 200× smaller than the
QED LbL contribution
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Conventional approach (QCD only on the lattice)

Correlation of 4 currents

Two independent momenta
+external mom q

Compute for all possible
values of p1 and p2,
four index tensor

Average over all possible QCD
gauge field configuratons

several q, (extrap. q → 0), plug
into perturbative QED two-loop
integrals... difficult
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New approach QCD and QED on the lattice

Average over combined gluon
and photon gauge field config-
urations

Quarks coupled to gluons and
photons

muon coupled to photons

[hep-lat/0509016;

Chowdhury et al. (2008);

Chowdhury Ph. D. thesis (2009)]
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New approach...

Attach one photon by hand (see
why in a minute)

Correlation of 2pt hadronic loop
and 3pt muon line

[hep-lat/0509016;

Chowdhury et al. (2008);

Chowdhury Ph. D. thesis (2009)]
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The leading and next-leading contributions in α to magnetic part of correlation
function come from
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Subtraction of lowest order piece:

Subtraction term is product of
separate averages of the loop and
line

Gauge configurations identical in
both, so two are highly correlated.
Only way this will work.

In PT in α, correlation function
and subtraction have same con-
tributions except the light-by-light
term which is absent in the sub-
traction
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Test calculation in pure QED [Chowdhury thesis]
(Compare to well known PT result)

55

connect with each other. Hereby, we achieve Fig. 4.5. We calculate this diagram

non-perturbatively, which ensures the inclusion of the other two photons to get

the target diagram Fig. 4.4.

Fig. 4.5: Lattice implementation of lbl

If we consider the path integral represented in Fig. 4.5, and expand it pertur-

batively in the QED coupling constant, we can see how the O(α2
em) terms arise,

and can dominate our calculations. The QCD contribution starts at O(α2
em)

through vacuum polarization effects of the photon propagator [60]. Hence, it is

rather warranted to get rid of these contributions to extract our target diagram

in Fig. 4.4. Therefore, we propose the following method given by

〈 quark 〉

QCD+quenched QED

−
〈

quark

〉

QCD+quenched QED

〈 〉

quenched QED

(4.75)

to use combined (QED + QCD) lattice simulations to calculate the entire dia-

gram in the non-perturbative framework. As usual, 〈〉’s denote path integrals, or

configuration averages.

• Incoming muon has ~p = 0, outgoing ~p′ = −~pop = (1,0,0) (and permu-
tions)

• external muons put on shell in usual way (t1 � top � t2)

• (4d) Fourier transform “loop” and “line” separately

• Average over all QED gauge field configurations

• Subtraction difficult in practice since need to average loop and line sep-
arately over gauge fields first, then sum over q2.
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more lattice details

- Domain wall fermions (match 2+1 QCD ensembles)

- loop/line masses degenerate: mµ = 0.4 (heavy), later loop mass = 0.01

- Focus on 163 × 32 lattice size (some 163, 243 × 64)

- Non-compact quenched QED (easy, fewer lattice artifacts)

- Fix to Feynman gauge (photon propagator is simple)

- To enhance signal, take e = 1, or α = 1/4π instead of 1/137

- Few hundreds to couple thousands of configurations (measurements)

- Single lowest non-zero momentum used (no extrap q → 0 yet)
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Extracting the form factors

Gµ(t′, t) = 〈ψ(t′, ~p′) Jµ(t, q)ψ†(0, ~p)〉.
Insert two complete sets of states,

Gµ(t′, t) =
∑

s,s′

〈0|χN |p′, s′〉〈p′, s′|Jµ|p, s〉〈p, s|χ†N |0〉
1

2E 2E′
e−E

′(t′−t)e−Et + . . .

= Gµ(q2)× f(t, t′, E,E′) + . . . ,

(like LHZ reduction, but in Euclidean space)

For example, Jµ = Jx,

trPxyGx(q2) = pym(F1(q2) + F2(q2))

Pxy =
i

4

1 + γt

2
γyγx

Similarly,

trPtGt(q2) = m (E +m)

(
F1(q2) +

q2

(2m)2
F2(q2)

)
,

Pt =
1

4

1 + γt

2
,
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F2(0) (degenerate leptons, or g-2 of electron)
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Fig. 5.30: Anomalous magnetic moment (F2) of electron as a function of time

slices of the external vertex (top) on lattice volume of 163×32×8 with

loop mass =0.4, line mass = 0.4, and electron charge = 1.

F2 = (−1.5± 1.1)× 10−5 (lowest non-zero momentum)

Continuum PT result: 0.36(α/π)3 = 0.585× 10−5 (e = 1)

Statistical error same order as PT result
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Large mµ/me

enhancement seen in

perturbation theory

Try m = 0.01 in the

loop, or mµ/me = 40

[Aldins, Brodsky, Duffner, Kinoshita (1970)]
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F2 mµ/me = 40
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Fig. 5.31: Anomalous magnetic moment (F2) of muon as a function of time slices

of the external vertex (top) on lattice volume of 163×32×8 with loop

mass =0.01, line mass = 0.4, charge = 1 (for both electron and muon).

F2 = (3.95± 0.40)× 10−4 (lowest non-zero momentum)

Continuum PT result: ≈ 10(α/π)3 = 1.63× 10−4 (e = 1)

About 2.5 times PT result
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Finite volume effects

Large finite volume effect in O(α) Schwinger term ( e = 1, mµ = 0.2):
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Fig. 5.24: F2 as a function of q2/m2 for both local and conserved currents (con-

tinuum curve is also shown in black), where results from three lattice

volume of 163 × 64× 8 (top data points), 243 × 64× 8 (middle data

points), and 323×64×8 (bottom data points) were compared. source

and sink positions were located at tsrc = 0 and tsnk = 24 respectively.

Muon mass = 0.2, charge = 1, and periodic boundary conditions were

used in the simulations.

243: lbl F2 = (0.78± 0.61)× 10−4 (lowest non-zero momentum)

Low statistics (consistent with PT), move on to full QCD+QED anyway
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F2 in 2+1 flavor QCD

Include hadronic part in the loop only (same in subtraction)

2+1 flavors of DWF (RBC/UKQCD)

a = 0.114 fm, 163 × 32, a−1 = 1.73 GeV

mq ≈ 0.013 (mπ ≈ 400 MeV)

∼ 1000 configurations (one QED conf. for each QCD conf.)

F2 = (−1.6± 1.8)× 10−4 (lowest non-zero momentum)

Magnitude of error is about 100× model estimates

model calculations (physical mass and charge) about 200 times smaller than
QED light-by-light contribution.

Signal has disappeared, but statistical error stayed about the same
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Another alternative: π0→ γ(∗)γ(∗)

Calculate π0 → γ(∗)γ(∗) vertex function (form factor)

Insert into model calculations of HLbL amplitude (draw)

Can be (partially) measured in experiment (c.f., next talk by Moricciani)

Difficulty: must integrate over all possible momenta of each photon and
the (low) momentum of the pion (momentum conservation: only two
are independent) (calculate for several momenta and fit?)

First calculations [S. D. Cohen, et al (2008) , JLQCD (2009)]
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Planning future workshop on HLbL

Working with Dave Hertzog and Lee Roberts

include models, lattice, and experimental input

Invite experts in each topic

Proposed to Institute of Nuclear Theory (Washington)
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Summary/Outlook: light-by-light contribution (O(α3))

• Pure QED calculation on the lattice roughly reproduces the perturbative
result (first ever). Encouraging.

– Finite volume effects are large, but probably manageable

• Full hadronic contribution is O(102) times smaller, so still swamped by
the statistical noise (first ever– something to shoot at)

• Small volumes, small statistics. Try

– Volume (low-mode) averaging for the loop

– Larger volumes

– More statistics, i.e. more QED configurations per QCD configuration

• and/or attempt conventional calculation and/or π0 → γγ vertex

• two lepton/quark loops not yet attempted!

• Next generation peta-flop computers needed

Acknowledgments: This research was supported by the US DOE and RIKEN
BNL Research Center. Computations done on the QCDOC supercomputers
at BNL and Columbia University.
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Status of the experimental measurement (Muon (g − 2) Collaboration, BNL-
E821) of aµ.

 -
 1

1
6
5
9
0
0
0

1
0

 1
0

×
µ

a

150

160

170

180

190

200

210

220

230

+
µ

-
µ

Avg.

]-e
+

[e

]τ[

Experiment Theory

aµ(exp) = 11 659 208(6)× 10−10 (accurate to about 0.5 ppm)
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Theory calculation

(Summary from D. W. Hertzog [E821 Collaboration], hep-ex/0501053.)

Table 1: Comparison of aµ(SM) with aµ(Exp)

aµ × 1010 ∆aµ × 1010

QED 11 658 471.94 0.14
QCD 695.4 7.3
Weak 15.4 0.22
Theory 11 659 182.7 7.4
Experiment 11 659 208 6
aµ(EXP)− aµ(SM) 25.3 9.5

Table 2: QCD contribution to the muon g − 2

aµ × 1010 ∆aµ × 1010

hadronic vacuum polarization (O(α2
em)) 693.4 6.4

hadronic vacuum polarization (O(α3
em)) −10.0 0.6

hadronic light-by-light (O(α3
em)) 12.0 3.5

Total QCD 695.4 7.3
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