MESON SPECTROSCOPY RESULTS 1/20

J. Rosner, at "Lattice Meets Experiment," Fermilab, April 26–27, 2010

Some results which can be compared to lattice predictions:

- $1^1 P_1(c\bar{c}) \equiv h_c$ mass, production, decays (CLEO, BESIII)
- Magnetic quadrupole (M2) in E1 charmonium transitions: μ_c (CLEO)
- $[J/\psi, \psi(2S)] \rightarrow \gamma \eta_c(1S)$ and search for $\psi(2S) \rightarrow \gamma \eta_c(2S)$ (CLEO)
- States in the Y(3940) mass range (Belle)
- Observation of the ${}^{3}D_{1}$ bottomonium state (BaBar)
- η_b mass, production rates in $\Upsilon(2S, 3S) \rightarrow \gamma \eta_b$ (BaBar, CLEO)
- Search for $1^1 P_1(b\overline{b}) \equiv h_b$ in $\Upsilon(3S) \to (\pi^0, \pi^+\pi^-)h_b$ with $h_b \to \gamma \eta_b$ (CLEO)
- The B_c meson: precise mass measurement (CDF)

More challenging for lattice QCD:

- Decays $[J/\psi, \psi(2S)] \rightarrow \gamma(\eta/\eta')$ ($c\bar{c}$ admixture of η/η' ?) (CLEO)
- Low-mass $p\bar{p}$ states in charmonium radiative decays (BESIII)
- Exclusive decays of χ_c , h_c , χ_b , χ_b' : Fragmentation (BES,CLEO)

THE CLEO-c DETECTOR

2/20

Many of today's results will be as a member of CLEO; thanks to colleagues

Photon $\Delta E/E = (5\%, 2.2\%)$ at (0.1,1) GeV; charged trk. $\Delta p/p = 0.6\%$ at 1 GeV

CHARMONIUM SPECTRUM 3/20

Items of interest circled: h_c properties; M2 admixtures in $\psi(2S) \rightarrow \gamma \chi_c \rightarrow \gamma \gamma J/\psi$ [relevant to M1 transitions $\psi(nS) \rightarrow \gamma \eta_c(nS)$]; nature of states near 3.9 GeV.

PROPERTIES OF h_c 4/20

Last charmonium state below flavor threshold: $h_c(1P)$, spin-singlet $(J/\psi + 30 \text{ yr}!)$ Seen in isospin-violating decay $\psi(2S) \rightarrow \pi^0 h_c(1P)$ (\mathcal{B}_1), $h_c(1P) \rightarrow \gamma \eta_c(1S)$ (\mathcal{B}_2) S. Dobbs + (CLEO), PRL **101**, 182003 (2008) [24.5M $\psi(2S)$]: $M(h_c) = 3525.28 \pm 0.19 \pm 0.12 \text{ MeV}, \langle M(^3P_J) \rangle - M(h_c) = 0.02 \pm 0.19 \pm 0.13 \text{ MeV}$ M. Ablikim + (BESIII), PRL **104**, 132002 (2010) [106 M $\psi(2S)$]: $M(h_c) = 3525.40 \pm 0.13 \pm 0.18 \text{ MeV}, \langle M(^3P_J) \rangle - M(h_c) = -0.10 \pm 0.13 \pm 0.18 \text{ MeV}$ Error \simeq same as CLEO: Smaller statistical but larger systematic

Hyperfine splitting found small between P-wave states; wave function zero at origin

CLEO saw $\eta_c(1S)$ both inclusively $[\mathcal{B}_1\mathcal{B}_2 = (4.22\pm0.44\pm0.22) \times 10^{-4}]$ and in 15 exclusive modes $[\mathcal{B}_1\mathcal{B}_2 = (4.15\pm0.48\pm0.77) \times 10^{-4}]$

BESIII made separate measurements: $\mathcal{B}_1\mathcal{B}_2 = (4.58\pm0.40\pm0.50) \times 10^{-4}$; $\mathcal{B}_1 = (8.4\pm1.3\pm1.0) \times 10^{-4}$; $\mathcal{B}_2 = (54.3\pm6.7\pm5.2)\%$

BESIII $h_c(1P)$ **SPECTRA**

Top: π^0 recoil mass; E1-tagged analysis $\psi' \rightarrow \pi^0(h_c \rightarrow \gamma \eta_c)$

Bottom: Inclusive analysis of $\psi' \rightarrow \pi^0 h_c$

 $\Gamma(h_c) = 0.73 \pm 0.45 \pm 0.28$ MeV (< 1.44 MeV at 90% confidence)

HIGHER MULTIPOLES IN CHARMONIUM 6/20 RADIATIVE TRANSITIONS

M. Artuso *et al.*, arXiv:0910.0046 \Rightarrow PRD 80, 112003 (2009) Analysis initiated by R. Galik; thesis of James Ledoux (Cornell)

Transitions $\psi' \rightarrow \gamma \chi_{cJ} \rightarrow \gamma \gamma J/\psi$ dominantly electric dipole (E1)

Higher multipoles allowed: M2 for $J_{\chi} = 1$; M2 and E3 for $J_{\chi} = 2$; No E3 for $S \leftrightarrow P$ single-quark trans.

Angular distributions of photons are sensitive to higher multipoles

M2 transition measures charmed quark's total magnetic moment

Relevant to strengths of M1 transitions $\psi(nS) \rightarrow \eta_c(nS)$

Prediction of M2 admixture: G. Karl, S. Meshkov, JLR, PRL 45, 215 (1980)

HELICITY AMPLITUDES AND MULTIPOLES7/20

Five angles describe $\psi' \to \gamma \chi \to \gamma \gamma J/\psi$ decays

Distributions depend on helicity amplitudes $B_{\nu'}$ ("before" χ) and A_{ν} ("after" χ):

Clebsch-Gordan coeffs. relate helicity amps. A (or B) and multipole amps. $a_{J_{\gamma}}^{J_{\chi}}$

M2 amplitudes related to anomalous moment κ_c of charm quark (potl. indep.!):

$$a_2^{J=1} \equiv \frac{M2}{\sqrt{E1^2 + M2^2}} = -\frac{E_{\gamma}}{4m_c}(1 + \kappa_c)$$
$$a_2^{J=2} \equiv \frac{M2}{\sqrt{E1^2 + M2^2 + E3^2}} = -\frac{3}{\sqrt{5}}\frac{E_{\gamma}}{4m_c}(1 + \kappa_c) ;$$

similarly for b amplitudes with sign change, $E_{\gamma} \to E_{\gamma'}$. These follow from

$$H_I = -\frac{e_c}{2m_c}(\vec{A^*} \cdot \vec{p} + \vec{p} \cdot \vec{A^*}) - \mu \vec{\sigma} \cdot \vec{H^*} + (\text{spin} - \text{orbit term})$$

 $e_c \equiv \frac{2}{3}|e|$; $\mu \equiv (e_c/2m_c)(1+\kappa_c)$; $\vec{A^*}$ and $\vec{H^*} \equiv \nabla \times \vec{A^*}$ refer to emitted photon

$J_{\chi} = 1, 2$ LIKELIHOODS

8/20

COMPARISON WITH PREVIOUS RESULTS 9/20

CLEO-c: circle (two-parameter fit for $J_{\chi}=2$); Xtal Ball: diamonds; E760: ∇ ; E835: Δ ; BES-II: square; Th. ($m_c=1.5$ GeV, $\kappa_c=0$): dashes

First significant evidence for $a_2^{J=1} \neq 0$; $\sqrt{\text{prediction}}$

Multipoles $b_2^{J=1}$ and $a_2^{J=2}$ also significantly non-zero and in accord with prediction

Multipole $b_2^{J=2}$ not significant; error reduced w.r.t. previous

No evidence for E3 transitions

Dudek +, PR D **73**, 075407; **79**, 094504: $a_2^{J=1} = -0.09(7); a_2^{J=2} = -0.39(7);$ $a_3^{J=2} = -0.01(1)$ $[J/\psi, \psi(2S) \rightarrow \gamma \eta_c(1S);$ **SEARCH FOR** $\psi(2S) \rightarrow \gamma \eta_c(2S)$ R. E. Mitchell + (CLEO), PRL **102**, 011801 (2009): $\mathcal{B}[J/\psi \rightarrow \gamma \eta_c(1S)] =$

 $(1.98 \pm 0.09 \pm 0.30)$ %; scaling $\sim E_{\gamma}^3 \Rightarrow \mathcal{B}[\psi(2S) \to \gamma \eta_c(2S)] = (4.8 \pm 1.4) \times 10^{-4}$

CLEO (above) also measures $\mathcal{B}[\psi(2S) \rightarrow \gamma \eta_c(1S) = (4.32 \pm 0.16 \pm 0.60) \times 10^{-3}$

PR D 81, 052002 (2010): CLEO upper limit $\mathcal{B}[\psi(2S) \rightarrow \gamma \eta_c(2S)] < 7.6 \times 10^{-4}$

Lattice QCD predicts $\mathcal{B}[(J/\psi, \psi') \rightarrow \gamma \eta_c(1S)] = (2.7 \pm 0.1, 0.13 \pm 0.26)\%$: J. Dudek, R. G. Edwards, and C. E. Thomas, PR D **79**, 074504. How about $\psi(2S) \rightarrow \gamma \eta_c(2S)$?

STATES IN 3915–3940 MASS RANGE

Is Belle's $Y(3940) \rightarrow J/\psi\omega$ [S. K. Choi +, PRL **94**, 182002] with $M = 3943 \pm 11 \pm 13$ MeV, $\Gamma = 87 \pm 22 \pm 26$ MeV a 1⁺⁺ state mixing with X(3872)?

BaBar [B. Aubert +, PRL **101**, 082001 (2008)] sees $J/\psi\omega$ state at $M=3914.6^{+3.8}_{-3.4}\pm2.0$ MeV, $\Gamma=34^{+12}_{-8}\pm5$ MeV

BaBar (arXiv:1002.0281) also confirms earlier Belle observation of a 2⁺⁺ candidate in $\gamma\gamma \rightarrow \chi'_{c2} \rightarrow D\bar{D}$: M = (3926.7±2.7±1.1) MeV, Γ = (21.3±6.8±3.6) MeV

Belle sees a candidate for $J^{PC} = 0^{++}$ or 2^{++} in $\gamma\gamma$ collisions [S. Uehara +, PRL **104**, 092001 (2010)]: $M = 3915 \pm 3 \pm 2$ MeV, $\Gamma = 17 \pm 10 \pm 3$ MeV, $\Rightarrow J/\psi\omega$

BOTTOMONIUM SPECTRUM^{11/20}

Observation of $\Upsilon({}^{3}D_{J})$ state(s) [BaBar: P. del Amo Sanchez +, arXiv:1004.0175v2]; η_{b} mass, production rate [BaBar: PRL **101**, 071801 (2008); **103**, 161801 (2009); CLEO: G. Bonvicini +, PR D **81**, 031104(R) (2010)]; $h_{b}(9900)$ search [CLEO]

CONFIRMATION OF $\Upsilon(1^3 D_J)$ ^{12/20}

BaBar: Fit to region near 10.16 GeV with $M[\Upsilon(1^3D_2) = 10164.5 \pm 0.8 \pm 0.5]$ MeV ($33.9^{+8.2}_{-7.5}$ events); $M[\Upsilon(1^3D_1) = 10151.6^{+1.3}_{-1.4} \pm 0.5]$ MeV ($10.6^{+5.7}_{-4.9}$ events); $M[\Upsilon(1^3D_3) = 10172.9 \pm 1.7 \pm 0.5]$ MeV ($9.4^{+6.2}_{-5.2}$ events) [CLEO: $\Upsilon(1^3D_2)$ only]

CLEO $\Upsilon(3S) \rightarrow \gamma \eta_b(1S)$ analysis 13/20

New (cf. BaBar): (1) initial-state radiation (ISR) in $e^+e^- \rightarrow \gamma(859 \text{ MeV})\Upsilon(1S)$; (2) finite $\Gamma(\eta_b)$ (nominal 10 MeV); (3) angle between $\gamma(920 \text{ MeV})$ and thrust axis [BaBar: $\cos \theta_T < 0.7$; CLEO: bins I(0.0-0.3), II(0.3-0.7), III(0.7-1.0) fit separately] Subtract large peak (\Downarrow) due to $\chi_b(2P) \rightarrow \gamma\Upsilon(1S)$

68.5±6.6±2.0 MeV below Υ BaBar: 71.4^{+2.3}_{-3.1} ± 2.7 MeV 66.1^{+4.9}_{-4.8} ± 2.0 MeV (2S)

Examples of lattice calculations: HPQCD: 61(14) MeV [PRD **72**, 094507 (2005)] RBC/UKQCD: 52.5(1.5) MeV [PRD **79**, 094501 (2009)] FNAL/MILC: 54.0±12.4^{+1.2}_{-0.0} MeV [PRD **81**, 034508 (2010)]

 $\mathcal{B}[\Upsilon(3S) \to \gamma \eta_b(1S)] =$ (4.8±0.5±1.2)×10⁻⁴ (BaBar) (7.1±1.8±1.1)×10⁻⁴ (CLEO)

THE B_c MESON

Flavor-independence of quarkonium potential (see review by C. Quigg in 1979 Lepton-Photon Symposium, Fermilab) allows estimates of masses of $b\bar{c}$ states, e.g.:

Authors E. Eichten, C. Quigg D. Ebert *et al.* S. Godfrey Lattice (HPQCD/FNAL) Lattice (HPQCD)

 $\begin{array}{lll} \mbox{Reference} & M(B_c) & M(B_c^*) \\ \mbox{PR D 49, 5845 (1994)} & 6264 \mbox{ MeV} & 6337 \mbox{ MeV} \\ \mbox{PR D 67, 014027 (2003)} & 6270 \mbox{ MeV} & 6332 \mbox{ MeV} \\ \mbox{Private comm.} & 6271 \mbox{ MeV} & 6338 \mbox{ MeV} \\ \mbox{PRL 94, 172001 (2005)} & 6304 \pm 12^{+18}_{-0} \mbox{ MeV} - \\ \mbox{PRL 104, 022001 (2010)} & \Delta M_{\rm hf} = 53(7)(2) \mbox{ MeV} \end{array}$

Larger peak at left: $B \rightarrow J/\psi K^{\pm}$

CDF measured $M(B_c)$ in $J/\psi \pi^{\pm}$ mode: $6275.6 \pm 2.9 \pm 2.5$ MeV: T. Aaltonen +, PRL **100**, 182002 (2008) Eichten-Quigg and Ebert *et al.* quote other predictions

Lattice hyperfine prediction smaller than many others but error needs reduction

Challenge to experiment: γ in $B_c^* \rightarrow \gamma B_c$

DECAYS $[J/\psi, \psi(2S)] \rightarrow \gamma(\pi^0, \eta, \eta')$ 15/20

T. K. Pedlar + (CLEO), PR D **79**, 111101 (R) (2009)

 $J/\psi \rightarrow \gamma \pi^0$ BR gives form factor for $\gamma^* \rightarrow \gamma \pi^0$. Below calculation by Chernyak + Zhitnitsky, Phys. Rep. **112**, 173 (1984). Can lattice predict it?

Initial	$\mathcal{B}(10^{-4})$		$(p_{\eta}^*/p_{\eta'}^*)^3$
state	$\gamma\eta$	$\gamma\eta^\prime$	
J/ψ	$11.01 \pm 0.29 \pm 0.22$	$52.4 \pm 1.2 \pm 1.1$	1.229
ψ^{\prime}	< 0.02	$1.19 \pm 0.08 \pm 0.03$	1.153

Assuming these decays proceed via $c\bar{c} \rightarrow \gamma gg \rightarrow \gamma(\eta, \eta')$, the η/η' ratio should give the relative contribution of SU(3) singlet in η and η'

Correcting for p^*3 , J/ψ decays give 0.17 ± 0.01 while ψ' gives < 0.02. Typical model gives $\simeq 1/8$ so it is $\mathcal{B}(\psi' \to \gamma \eta')$ that is anomalously low

Reminiscent of strong suppression of certain ψ' decays such as $\rho\pi$; does lattice expect anything unusual about ψ' ?

LOW-MASS $p\bar{p}$ STATES ^{16/20}

BESIII (M. Ablikim +, arXiv:1001.5328) confirms BES-II (PRL **91**, 022001) lowmass $p\bar{p}$ threshold enhancement in $J/\psi \rightarrow \gamma p\bar{p}$ (producing J/ψ in $\psi' \rightarrow \pi^+\pi^- J/\psi$)

 $M = 1861^{+6+7}_{-13-26}$ MeV, $\Gamma < 38$ MeV. Can lattice say anything about baryonantibaryon resonances? Early prediction (including exotics): PRL **21**, 950 (1968)

EXCLUSIVE CHARMONIUM DECAYS 17/20

 $h_c \rightarrow 2\pi^+ 2\pi^- \pi^0$: G. S. Adams *et al.* (CLEO), Phys. Rev. D **80**, 051106(R) (2009) $\mathcal{B}[\psi(2S) \to \pi^0 h_c] \mathcal{B}[h_c \to 2(\pi^+ \pi^-) \pi^0]$ $= (1.88^{+0.48+0.47}_{-0.45-0.30}) \times 10^{-5}$ $2(\pi^+\pi^-)\pi^0$ estimated to be a few % of all hadronic h_c decays Can lattice predict inclusive properties such as average multiplicity, dispersion, in decays of a heavy particle? M. Ablikim + (BESIII), PR D **81**, 052005: (2010): New, more accurate branching fractions for $\chi_{c0,2} \to (\pi^0 \pi^0, \eta \eta); \ \chi_{cJ} \to VV$

Relevant to low-multiplicity tail of fragmentation models such as PYTHIA; what can lattice QCD say?

Lower-mass $\pi^0 \pi^0$, $\eta \eta \leftrightarrow$ glueballs?

What do Monte Carlo fragmentation programs (PYTHIA, ...) predict?

CLEO: UNFINISHED BUSINESS 19/20

More hadronic transitions in $b\overline{b}$ systems, e.g., $\Upsilon(3S) \to \gamma \chi'_{b0} \to \gamma \eta \eta_b$

Discover $h_b = 1^1 P_1(b\bar{b})$ state via $\Upsilon(3S) \to \pi^0 h_b \to \pi^0 \gamma \eta_b$ or $\Upsilon(3S) \to \pi^+ \pi^- h_b \to \pi^+ \pi^- \gamma \eta_b$

Search for $\Upsilon(1S) \rightarrow \gamma \eta_b$ summing exclusive η_b modes

Emulate η_b , χ_b , χ_b' decays using PYTHIA to compare with the branching fractions in the 14 observed modes

Map out D^0 , D^+ inclusive decays as CLEO has already done for D_s^+ [S. Dobbs +, PR D **79**, 112008 (2009)]. Few (if any) "missing" modes in D_s^+ decays; inclusive study pointed the way to a few more [J. Y. Ge + (CLEO), PR D **80**, 051102(R) (2009)]. Specific missing D^0 , D^+ modes predicted by isospin statistical model include $\mathcal{B}(D^+ \to \bar{K}^0 \pi^+ 2\pi^0) \simeq (\text{few \%})$

Can address these and other topics in data from CLEO, BaBar, Belle, CDF, D0, BESIII (forthcoming). Informal CLEO deadline for wrapping up analyses is about a year from now.

CONCLUSIONS

Charm/bottom spectroscopy continues to advance

- h_c is now well-established; how well can lattice predict its mass? Width?
- See M2 amplitudes for $\chi_{c1} \rightarrow \gamma J/\psi$, $\chi_{c2} \rightarrow \gamma J/\psi$, and $\psi' \rightarrow \gamma' \chi_{c1}$; exclude pure E1 by more than $(11, 6)\sigma$ for $J_{\chi} = (1, 2)$.
- Strengths of these amplitudes agree with predictions to $\mathcal{O}(E_{\gamma^{(\prime)}}/m_c)$ with $m_c = 1.5$ GeV and $\kappa_c = 0$; lattice did not anticipate M2 contributions so well
- B_c came in a bit below lattice predictions; still time to predict B_c^* mass
- η_b has been confirmed; lattice did better than potential models in predicting it
- CLEO's discovery of 1^3D_2 bottomonium state confirmed and extended by BaBar; what can lattice say about mass, 1^3D_J fine structure?
- Many questions in meson spectroscopy may require methods beyond the capability of current lattice approaches; doesn't mean they should be ignored.

Still learning about (c,b) mesons after (35,32) years, with many potential tests of our understanding of low-energy strong interactions