

Charm semileptonic decays with the *B* factories

João Firmino da Costa Patrick Roudeau Arantza Oyanguren Justine Serrano

for the BaBar collaboration

$D^0 \rightarrow K^- e^+ v_e$	<i>BABAR</i> [PRD 76 , 052005 (2007)]
$D^0 \rightarrow K^- l^+ \nu_e$	Belle [PRL 97, 061804 (2006)]
$D^0 \rightarrow \pi^- l^+ \nu_e$	Belle [PRL 97, 061804 (2006)]
$D_s^+ \rightarrow K^- K^+ e^+ \nu_e$	<i>BABAR</i> [PRD 78 , 051101(R) (2008)]
$D^+ \rightarrow K^- \pi^+ e^+ \nu_e$	BABAR [preliminary, aiming PRD]

Lattice QCD Meets Experiment Workshop 2010, Fermilab, 26/27 April 2010 1

Introduction

Decay rate:

$$d\Gamma \propto \left|V_{ij}\right|^2 \times FF^2$$

- Charm: V_{cs} well known thanks to CKM unitarity \rightarrow we can measure precisely FF
- validate lattice QCD computation
- \bullet Apply this method to the B sector to improve the determination of $|V_{ub}|$

Example: $D_s^+ \rightarrow K^-K^+e^+\nu$

$$q^2 = (P_l + P\nu)^2 = (P_P - P_{P'})^2$$

Strong interaction effects parameterized by FF

• Pseudoscalar l v decay : one form factor, angular distribution known

• 2 pseudoscalars l v decay : 3 helicity states, 5 kinematic variables

Isolation of D semileptonic decays in BaBar

25

e⁺e⁻ collisions @Y(**4S**) CM energy. Other processes are present: events from lighter quark pair production (e⁺e⁻ \rightarrow q \bar{q} , called **continuum events**)

• use D from <u>continuum</u>.

These are jet-like events and allow for a better reconstruction of the missing v as compared to D's from B decays

Control of mass constrained fit inputs

Ex. for $D^+ \rightarrow K^- \pi^+ e^+ \nu$

D⁺ direction and missing energy in the signal hemisphere are determined using K⁻ $\pi^+ \pi^+$ (=true), and compared with corresponding determination in SL (=rec) for data and MC.

Charm background in *BaBar*

• Data-MC comparison in hadronic D decays into charged particles used to:

improve simulation of particle production associated with c-mesons

• Correction to MC of cc:

semileptonic decay models hadronization of c-quarks

Belle approach: $e^+e^- \rightarrow D^{(*)}_{tag}D^{*-}_{sig}X$

- signal D⁰ is tagged using reconstruction of all other particles,
- **positive** : high resolution on decay kinematic variables, allows absolute BR measurements, low background
- **negative** : low efficiency, systematics not negligible, applies to D⁰ only(?)

Signal events : 74 000

$D^0 \rightarrow K^- e^+ \nu_e$

Form factor variation

Rate

$$\alpha_{\text{pole}} = 0.38 \ (2) \ (3) \text{ BaBar}$$

 $\alpha_{\text{pole}} = 0.30 \ (3) \ (1) \text{ CLEO-c}$
 $[\alpha_{\text{pole}} = 0.21 \ (4) \ (3) \text{ CLEO-c } 281 \text{ pb}^{-1}]$
 $\alpha_{\text{pole}} = 0.52 \ (8) \ (6) \text{ Belle}$
 $\alpha_{\text{pole}} = 0.50 \ (4) \ (7) \text{ LQCD}$

$D_s \rightarrow K^- K^+ e^+ \nu_e$

- About 10% of D-meson are D_s
- 25000 signal events from 214 fb⁻¹ analyzed (50 times more statistics than FOCUS, CLEO-c has ~106 φ ev decays)
- 4D fit in the ϕ meson region

$D_s \rightarrow K^- K^+ e^+ \nu_e$

Form factors

Study the hadronic $K\pi$ system without accompanying hadrons

 $D^+ \rightarrow K^- \pi^+ e^+ \nu_e$

- $K\pi$ system in S wave.
 - phase variation with $m_{K\pi}$;

Present experimental results (LASS 1986, $K\pi \rightarrow K\pi$) still need validation. Phase of the $K\pi$ S-wave component is expected to be the same as in $K\pi$ scattering, modulo π (Watson's theorem) in the elastic regime

 D^+

- $K\pi$ system in P wave.
 - precise determination of $K^{*0}(892)$ resonance parameters;
 - determination of form factor parameters (compare with LQCD);
 - search for possible higher mass state contributions;
- understand the D semileptonic exclusive decays (missing exclusive states in B semileptonic decays).

Using 347.5 fb¹ Fit in 5D in all phase space, first time in this decay

$\mathcal{B}(D^+ \to K^- \pi^+ e^+ \nu_e) = (4.04 \pm 0.03 \pm 0.04 \pm 0.09) \times 10^{-2}$

Component	S+K*(892)	S+K*(892)	S+K*(892)
	(%)	+ K*(1410) (%)	$+ K^{*}(1410) + D(\%)$
S-wave	$5.62 \pm 0.14 \pm 0.13$	$5.79 \pm 0.16 \pm 0.15$	$5.69 \pm 0.16 \pm 0.15$
P-wave	94.38	94.21	94.12
K*(892)	94.38	$94.11 \pm 0.74 \pm 0.75$	94.41 $\pm 0.15 \pm 0.20$
K*(1410)	0	$0.33 \pm 0.13 \pm 0.19$	$0.16 \pm 0.08 \pm 0.14$
D-wave	0	0	$0.19 \pm 0.09 \pm 0.09$

13

S-wave phase

- Watson's theorem : same phase variation (modulo π) with regards to K π scattering in the elastic regime
- We find agreement with results from $K\pi$ scattering experiment (LASS) (difference of π)
- This may help understanding the effect of the spectator π in D⁺ \rightarrow K⁻ π ⁺ π ⁺ experiments

Conclusions

- BaBar and CLEO-c agree on the rate and on the FF q² variation for $D^0 \rightarrow K^-e^+\nu$. These are reference values for LQCD.
- Accurate measurements of decay rate and FF q² variation for Ds $\rightarrow \varphi e^+ \nu$ and D⁺ $\rightarrow \overline{K}^{*0} e^+ \nu$. Similar values are obtained for A₁(0) and r₂, some difference seen on r_V.
- First measurement of the axial-vector FF q^2 variation.
- The S-wave component is about 5% in both decays. Complementary information to CLEO-c on the S-wave in D_s sl. decays. Some discrepancy observed in $D_s \rightarrow f_0 e^+ \nu$ with CLEO-c
- Measurements of the K π S-wave phase agree with LASS (+ π)
- Detailed measurements of the K*0 mass distribution
- Low limits placed on K^{*}(1410) and K₂^{*}(1430) contributions in the K⁻ π ⁺ final state.

Other experiments

• BES-III (e⁺e⁻) :

- LHCb (pp) : lot of charm, from B decays and prompt but ^{First} data coming analysis not easy in an hadronic environment
- SuperB (e⁺e⁻) :
 - First data in 2015 ? • at the Y(4S), 15 ab⁻¹ per year (~ 30x Babar statistics)
 - at the $\Psi(3770)$, 1.5 ab⁻¹ per year \rightarrow 2 months of data taking=300xCLEO-c

Future

- Present accuracy on hadronic FF is already much higher than LQCD evaluations
- Other sl D decay channels can be measured at B-factories using present data: $D^0 \rightarrow \pi^- e^+ \nu$, $D_s \rightarrow \eta/\eta' e^+ \nu$, $\Lambda_c \rightarrow \Lambda e^+ \nu$, ... (manpower?)
- To obtain higher accuracy, operating at threshold is better: low background, high resolution on kinematic variables, possibility to measure radiated photons, access rare decay modes, control of detector performances using J/ ψ decays, ...
- This favours the possibility to run a Super-flavour factory at charm threshold.