Leptonic D Decays

Liming Zhang (Syracuse University)

Lattice QCD Meets Experiment Workshop 2010 Fermilab April 26-27, 2010

Outline: Experimental Measurements

All CLEO-c results are updated using the final luminosity

Leptonic Decay: $D_{(s)}^+ \rightarrow \ell^+ \nu$

c and q (q=d,s) can annihilate to virtual W⁺, probability is proportional to wave into wave function overlap

In Standard Model (SM):

$$\Gamma(D_{(s)}^{+} \to \ell^{+} \nu) = \int_{D_{(s)}^{+}}^{2} |V_{cq}|^{2} \frac{G_{F}^{2}}{8\pi} m_{\ell}^{2} M_{D_{(s)}^{+}} \left(1 - \frac{m_{\ell}^{2}}{M_{D_{(s)}^{+}}^{2}}\right)$$

- *f* is decay constant, related to the overlap of the heavy and light quark wave-functions.
- V_{cq} are well known, we take $|V_{cd}| = |V_{us}| = 0.2246(12) \& |V_{cs}|$ = $|V_{ud}| - |V_{cb}|^2/2 = 0.97345(22)$, where $|V_{ud}| = 0.97425(22)$.

V_{cd} or c.

gluons

Reason to Measure

- Test of Lattice QCD calculations:
 - Lattice calculations on $f_{Bd} \& f_{Bs}/f_{Bd}$ are inputs for extracting CKM matrix elements. The analogous quantities $f_D \& f_{Ds}/f_D$ provide an experimental check.

 $\Delta m_d \propto f_{B_d}^2 |V_{td}V_{tb}^*|^2$ $\Delta m_s \propto f_{B_s}^2 |V_{ts}V_{tb}^*|^2$

 Possibilities to see effects of New Physics, for example H⁺

Which Channels to Measure?

$$\Gamma(D_{(s)}^{+} \to \ell^{+} \nu) = f_{D_{(s)}^{+}}^{2} |V_{cq}|^{2} \frac{G_{F}^{2}}{8\pi} m_{\ell}^{2} M_{D_{(s)}^{+}} \left(1 - \frac{m_{\ell}^{2}}{M_{D_{(s)}^{+}}^{2}}\right)^{2}$$

- **CKM-factor:** D_s rate / D^+ rate ≈ 20
- Helicity × Phase Space: $D^+ \rightarrow (\tau^+ v) : (\mu^+ v) : (e^+ v)$ rate: 2.67: 1 :2.4×10⁻⁵
- $D_s^+ \to (\tau^+ \nu) : (\mu^+ \nu) : (e^+ \nu)$ rate: 9.76 : 1 :2.4×10⁻⁵

• τ modes decay fraction

11% $\pi^-\nu$ 18% $e^-\nu\overline{\nu}$ 25% $\rho^-\nu$

- τ rates largest, but experimentally most difficult (at least 2 neutrinos missing: background larger). They can be used in D_s because of its extremely large rate.
- μ is the cleanest signal, because of only missing 1 neutrino.
- e rates too small to see, except if there is new physics

CLEO-c f_{D^+} Technique

CLEO-c uses Tagging: $e^+e^- \rightarrow \psi(3770) \rightarrow D^0 \overline{D^0}, D^+D^-$

Fully reconstruct D^- as tag, then examine the other D^+

- Can then infer neutrinos from

 $\mathbf{M}\mathbf{M}^2 = (\mathbf{p}_{D^+} - \mathbf{p}_{\ell^+})^2$ we know $E_{D^+} = E_{\text{beam}}$ and $\vec{p}_{D^+} = -\vec{p}_{D^-}$

- Can measure absolute \mathcal{B}

CLEO-c fully reconstructed D^- tags

•Total of 460,000 tags •Purity 84%

MM² *Distributions*

- Require only one charged track
- No additional photon > 250 MeV
- Minimum ionization μ⁺ deposits *E* in calorimeter (*E*_{Cal}<300 MeV): 98.8% efficient, rejects 45% of

Model of $K^0\pi^+$ shape

- Use $D^0 \to K^- \pi^+ \operatorname{vs} \overline{D}^0 \to K^+ \pi^-$, with loose cut on the 2nd D^0
- Ignore the K⁻ to calculate MM²

 $D^+ \rightarrow \mu^+ \nu Fits$

Fits N	D→µv	$D \rightarrow \tau(\pi \nu) \nu$
Fix τ(πν)ν /μν	149.7 ± 12.0	28.5 ± 2.3
Float τ(πν)ν/μν	153.9 ± 13.5	13.5 ± 15.3

Fitted $N_{\mu\nu}$ then subtracted by 2.4 ± 1.0 for extra BKG from continuum, D^0 and residual K⁰π⁺

Events in E_{Cal} >300 MeV can be used for background check in signal region.

- E_{Cal} >300 MeV rejects 98.8% μ^+ and 55% π^+

Systematic Error Summary

Error on f_{D^+} is 1/2 of this

TABLE III. Systematic errors on the $D^+ \rightarrow \mu^+ \nu$ branching ratio.

	Systematic errors (%)
Track finding	0.7
PID cut	1.0
MM ² width	0.2
Minimum ionization cut	1.0
Number of tags	0.6
Extra showers cut	0.4
Radiative corrections	1.0
Background	0.7
Total	2.2

Ref: Statistic error 8.4%

- No one dominant systematic error
- May be hard for BES-III to improve?

PRD 78, 052003 (2008) Fix $\tau v/\mu v$ at SM ratio of 2.67 818 pb⁻¹ $\mathcal{B}(D^+ \rightarrow \mu^+ \nu) = (3.82 \pm 0.32 \pm 0.09) \times 10^{-4}$ $f_{\rm D^+} = (206.7 \pm 8.5 \pm 2.5) \,\,{\rm MeV} \quad [\pm 4.1\% \pm 1.2\%]$ This is the appropriate number in context of SM Float $\tau v/\mu v$ $\mathcal{B}(D^+ \rightarrow \mu^+ \nu) = (3.93 \pm 0.35 \pm 0.10) \times 10^{-4}$ $f_{\rm D^+} = (209.7 \pm 9.3 \pm 2.5) \,{\rm MeV}$ This is the appropriate number for use with Non-SM models

Radiative correction reduced \mathcal{B} by -1%

Belle: $D_s^+ \rightarrow \mu^+ \nu$

- Look for $e^+e^- \rightarrow DKXD_s^*(\rightarrow \gamma D_s)$, where $X=(\gamma)n\pi$ & the D_s is not observed but inferred from calculating the MM (called M_{rec})
- Then add a candidate μ^+ and compute MM^2
- $N_{Ds} = 32100 \pm 870 \pm 1210$
- $N_{\mu\nu} = 169 \pm 16 \pm 8$

Results& Systematic Error

- $\mathcal{B}(D_{s}^{+} \to \mu^{+}\nu) = (0.638 \pm 0.076 \pm 0.057)\%$
- $f_{Ds} = 274 \pm 16 \pm 12 \text{ MeV}$

PRL **100**, 241801 (2008) 548 fb⁻¹

[±5.8% ±4.4%]

Radiative correction reduced \mathcal{B} by -1%

Systematic Error on B

Source of Error	%
Background	4.5
Signal MC statistics	6.4
Muon tracking and Id	2.8
Tag simulation	2.9
Total	8.9

Error on f_{Ds} is 1/2 of this

 $CLEO: D_{s}^{+} \rightarrow \mu^{+} \nu \& \tau^{+} \nu (\tau^{+} \rightarrow \pi^{+} \overline{\nu})$

Fit & Results $D_s^+ \rightarrow \mu^+ \nu \& \tau^+ \nu (\tau^+ \rightarrow \pi^+ \overline{\nu})$

Systematic Error Summary

Error on f_{Ds} is 1/2 of this

TABLE III. Systematic errors on determination of the $D_s^+ \rightarrow \mu^+ \nu$ branching fraction.

Error Source	Size (%)
Track finding	0.7
Particle identification of μ^+	1.0
MM ² width	0.2
Photon veto	0.4
Background	1.0
Number of tags	2.0
Tag bias	1.0
Radiative Correction	1.0
Total	3.0

• Dominated by "number of tags"

 $CLEO: D_{s}^{+} \rightarrow \tau^{+} \nu (\tau^{+} \rightarrow \rho)$

PRD 80, 112004 (2009)

- Same tag and fit technique as $D_s \rightarrow \mu^+ \nu$
- Because of the two neutrinos, the signal does not peak in MM², but the most important backgrounds do
- Use sum of extra E in calorimeter (E_{extra}) to suppress background

- Fit two MM² distributions in first two E_{extra} bins [0,0.1) & [0.1,0.2)
 - External Gaussian constraints on the expected background yields are added in the likelihood fit: allowing them varying within the measured branching fraction error.
 - We also measure three background \mathscr{B} 's $D_s^+ \rightarrow \pi^+ \pi^0 \pi^0$, $K^0 \pi^+ \pi^0 \& \eta \rho^+$
- Check: Fitting in E_{extra}>0.8 GeV shows that we well understand the other background.

Fit & Results $D_s^+ \rightarrow \tau^+ \nu (\tau^+ \rightarrow \rho)$

 $f_{Ds} = 257.8 \pm 13.3 \pm 5.2 \text{ MeV} [\pm 5.2\% \pm 1.9\%]$

CLEO: $D_{s}^{+} \rightarrow \tau^{+} \nu, \tau^{+} \rightarrow e^{+} \nu \nu$

- $\mathcal{B}(D_s^+ \to \tau^+ \nu) \bullet \mathcal{B}(\tau^+ \to e^+ \nu \nu) \sim 1.3\%$ is "large" compared to background $\mathcal{B}(D_s^+ \to Xe^+ \nu) \sim 8\%$
- We will be searching for events opposite a tag with one electron and not much other energy
- Opt to use only a subset of the cleanest tags

Measuring $D_s^+ \rightarrow \tau^+ \nu, \tau^+ \rightarrow e^+ \nu \nu$

BaBar: $D_s^+ \rightarrow \tau^+ \nu, \tau^+ \rightarrow e^+ \nu \overline{\nu}$

- Look for $e^+e^- \rightarrow DKXD_s^*(\rightarrow \gamma D_s)$, where $X=n\pi$ & the D_s is not observed but inferred from calculating the M_{Rec}
- Normalize to $D_s^+ \rightarrow K_s K^+ \mathcal{B}=(1.49\pm0.09)\%$, instead of measuring N_{tag} .
- Require signal side having a single e^+ or only K_sK^+ .
- E_{extra} used to separate signal & background

Fits of $D_s^+ \rightarrow \tau^+ \nu, \tau^+ \rightarrow e^+ \nu \overline{\nu}$

Results & Systematic Error

 $\mathcal{B}(D_{s}^{+} \to \tau^{+} \nu) = (4.5 \pm 0.5 \pm 0.4 \pm 0.3)\% \qquad \text{arXiv:1003.3064}_{427 \text{ fb}^{-1}}$ Last error is due to uncertainties on the *B* for $D_{s}^{+} \to K_{s}K^{+}, K_{s} \to \pi^{+}\pi^{-} \text{ and } \tau \to evv$ $f_{Ds} = 233 \pm 13 \pm 10 \pm 7 \text{ MeV} [\pm 5.6\% \pm 4.3\% \pm 3.0\%]$

TABLE I: Relative systematic uncertainty estimates on the branching fraction.

Source	Uncertainty (%)
Event Selection	3.0
Particle Identification	0.82
Tracking	0.68
$\tau \nu_{\tau}$ PDF Distribution	+7.7 - 4.7
$K_s^0 K$ PDF Distribution	+4.9 - 0.6
Peaking Background	+4.5 - 4.3

Varying *B*'s of peaking backgrounds

CLEO-c f_{Ds} Average

All systematic errors include ± 1.8 MeV due to uncertainties on τ_{Ds} (dominant contribution), V_{cs} & Masses.

Experiments have achieved errors 4.3% on f_{D^+} and 2.4% on f_{D^+}

Prospect from BES-III

- BES-III plans to take 20fb⁻¹ each at $\psi(3770)$ and 4170 MeV
 - So far 500 pb⁻¹ taken at $\psi(3770)$ from Jan. 2010.
 - Muon detector works in the appropriate momentum region with 90% efficiency and 5% fake rate.

$$\frac{\partial f_D}{f_D} = \sqrt{\left(\frac{\partial B}{2B}\right)^2 + \left(\frac{\partial \tau_D}{2\tau_D}\right)^2 + \left(\frac{\partial V_{cq}}{V_{cq}}\right)^2}$$

	δ <i>B</i> / <i>B</i>	$\delta au_D / au_D$	$\delta V_{ m cq}/V_{ m cq}$	$\delta f_D / f_D$
$D^+ \rightarrow \mu^+ \nu$	2%(stat.) 2%(syst.)?	0.6%	0.53%	1.5%
$D_s^+ \rightarrow \mu^+ \nu$	2%(stat.)* 2%(syst.)?	1.4%	0.03%	1.6%

BES-III can achieve 1-2% errors on f_{D^+} , f_{D_s} and f_{D^+}/f_{D_s}

"Physics at BES-III" arXiv:0809.1869

*With clean tags PDG'2010

Backup

Systematic error $D_s^+ \rightarrow \tau^+ \nu, \tau^+ \rightarrow e^+ \nu \nu$

Source	Effect on \mathcal{B} (%)
Background (nonpeaking)	0.7
$D_s^+ \rightarrow K_L^0 e^+ \nu_e$ (peaking)	3.2
Extra shower	1.1
Extra track	1.1
$Q_{\rm net} = 0$	1.1
Non electron	0.1
Secondary electron	0.3
Number of tag	0.4
Tag bias	0.2
Tracking	0.3
Electron identification	1.0
FSR	1.0
Total	4.1

Systematic Checks $D_s^+ \rightarrow \tau^+ \nu (\tau^+ \rightarrow \rho^+)$

 E_{extra} from fully reconstructed $D_s D_s^*$ event (9×9 tag modes)

 $E_{\text{extra}} > 0.8 \text{ GeV}$ test shows that all backgrounds are consistent with MC predictions

E_{extra} : from Fully Reconstructed $D_s D_s^*$

- Compare Data with Generic MC after background subtraction
- Numbers of tags in Generic MC are re-weighted modeby-mode according to that in the real data
- Value at 300 MeV is chosen, because it has the similar efficiency as ρ⁺ν at 200 MeV

E_{extra} (MeV)	$\epsilon_{ m Data}(\%)$	$\epsilon_{ m MC}(\%)$	$\epsilon_{\rm Data}/\epsilon_{\rm MC}-1~(\%)$	
<100	40.24 ± 1.27	40.81 ± 0.31	-1.4 ± 3.2	
$<\!\!200$	57.75 ± 1.28	59.12 ± 0.31	-2.3 ± 2.2	set $\sqrt{1}$ $\frac{2^2+1}{6^2} =$
$<\!300$	72.35 ± 1.16	73.21 ± 0.28	-1.2 ± 1.6	2.00/ amon
$<\!400$	83.27 ± 0.97	82.91 ± 0.24	0.4 ± 1.2	2.0% error

Expected (from MC) and Fit Yields

	Ι	$D_{s}^{+} \rightarrow \tau^{+} \nu (\tau^{-})$	$^{+} \rightarrow \rho^{+} \nu$)		
Component	$\mathcal{B}(\%)$	Constraint	E_{extra}	$< 0.1 { m ~GeV}$	0.1 < H	$E_{\rm extra} < 0.2 \ {\rm GeV}$
		Error $(\%)$	$\#~{\rm MC}$	# Data	$\#~{\rm MC}$	# Data
Signal				$155.2{\pm}16.5$		$43.7{\pm}11.3$
$K^0\pi^+\pi^0$	$1.0{\pm}0.2$	20	26.1	$25.2{\pm}4.8$	11.0	$10.5{\pm}2.1$
$\eta \rho^+$	8.9 ± 0.7	4.2	7.1	$7.0{\pm}0.6$	10.6	$10.5{\pm}0.9$
$\pi^{+}\pi^{0}\pi^{0}$	0.65 ± 0.14	22	2.8	2.8 ± 0.6	1.5	1.6 ± 0.3
$\tau^+ \to (\pi^+ + \pi^+ \pi^0 \pi^0) \overline{\nu}$	1.14 ± 0.06	25^{\dagger}	8.5	8.4 ± 2.1	12.2	10.9 ± 3.0
$\mu^+\nu$	0.576 ± 0.045	5.4	1.0	1.0 ± 0.1	0.48	0.5 ± 0.1
$\eta \pi^+$	1.58 ± 0.21	13.3	0.9	0.9 ± 0.1	0.9	0.9 ± 0.1
$\phi \pi^+$	4.35 ± 0.35	8	1.7	1.7 ± 0.2	2.8	2.8 ± 0.3
$X\mu^+\nu$	5.9	35^{\ddagger}	3.4	3.4 ± 1.2	7.4	6.6 ± 2.6
Other background		30^*	11.5	11.4 ± 3.3	11.8	10.5 ± 3.3
Fake D_s^- background				81.8 ± 5.0		74.8 ± 4.6

 \dagger We assign a 25% error based on the uncertainties of the resonant substructure.

‡ We have checked the yields and assign a 35% uncertainty based on a study of $D_s^+ \to X e^+ \nu$. * We assign a 30% uncertainty based on the sample size.

Mass Distribution of D_s Tags

We fit MM*² combining with D_s invariant mass to measure the single tag yield: D_s invariant mass gives better control of the wrong D_s (or called "sideband") background.

Systematic Errors $D_s^+ \rightarrow \tau^+ \nu (\tau^+ \rightarrow \rho^+ \nu)$

	%
ρ^+ decay	0.3
ς+	1.0
ρ^+ decay	1.3
ciency	2.0
iencies on background	1.1
	1.1

Source of Error	%
Finding the π^+ track from ρ^+ decay	0.3
Particle identification of π^+	1.0
Finding the π^0 track from ρ^+ decay	1.3
$E_{\rm extra} < 0.2 {\rm GeV}$ signal efficiency	2.0
$E_{\text{extra}} < 0.2 \text{GeV} \& \pi^0$ efficiencies on background	1.1
Background modeling	1.1
Number of single tag D_s^{-}	2.0
Tag Bias	1.0
Total	3.8

Number of $D_s + \gamma Tags$

Cross-section vs. CM

PRD 80, 072001 (2009)

4/26/2010

Fit yields of $D_s^+ \rightarrow \tau^+ \nu, \tau^+ \rightarrow e^+ \nu \overline{\nu}$

	N _{sig}	N _{bkg}
$E_{\text{extra}}=0$	70 ± 10	87 ± 11
$E_{\text{extra}} > 0$	378 ± 35	2186±57
Total	448±36	2273 ± 58

Peaking background in total N _{bkg}	Ν
$D_{\rm s}^{+} \rightarrow \eta e^{+} \nu$	226
$D_{\rm s}^{+} \rightarrow \eta' e^{+} \nu$	24
$D_{\rm s}^{+} \rightarrow \phi e^{+} v$	75
$D_{\rm s}^{+} \rightarrow K_{\rm L} e^{+} v$	59
Total	384

Rediative Correction

- FSR of the muon has been corrected in MC simulation.
- However, another process where the $D^+ \rightarrow \gamma D^{*+} \rightarrow \gamma \mu^+ \nu$, where the D^{*+} is a virtual vector or axial-vector meson. The process is not helicity suppressed. With our photon energy cut, we find the contribution of such process is about 1%.

Updated Rosner & Stone Table

TABLE I: Experimental results for $\mathcal{B}(D_s^+ \to \mu^+ \nu)$, $\mathcal{B}(D_s^+ \to \tau^+ \nu)$, and $f_{D_s^+}$. Numbers for $f_{D_s^+}$ have been extracted using updated values for masses and $|V_{cs}|$ (see text); radiative corrections have been included. Common systematic errors in the CLEO results have been taken into account.

Experiment	Mode	B	$f_{D_s^+}$ (MeV)
CLEO-c [12]	$\mu^+\nu$	$(5.65 \pm 0.45 \pm 0.17) \times 10^{-3}$	$257.6 \pm 10.3 \pm 4.3$
Belle [13]	$\mu^+\nu$	$(6.38 \pm 0.76 \pm 0.57) \times 10^{-3}$	$274 \pm 16 \pm 12$
Average	$\mu^+\nu$	$(5.80 \pm 0.43) \times 10^{-3}$	261.5 ± 9.7
CLEO-c [12]	$\tau^+\nu (\pi^+\overline{\nu})$	$(6.42 \pm 0.81 \pm 0.18) \times 10^{-2}$	$278.0 \pm 17.5 \pm 3.8$
CLEO-c [14]	$\tau^+\nu \ (\rho^+\overline{\nu})$	$(5.52 \pm 0.57 \pm 0.21) \times 10^{-2}$	$257.8 \pm 13.3 \pm 5.2$
CLEO-c [15]	$\tau^+\nu (e^+\nu\overline{\nu})$	$(5.30 \pm 0.47 \pm 0.22) \times 10^{-2}$	$252.6 \pm 11.2 \pm 5.6$
BaBar [16]	$\tau^+\nu \ (e^+\nu\overline{\nu})$	$(4.54 \pm 0.53 \pm 0.40 \pm 0.28) imes 10^{-2}$	$2233.8 \pm 13.7 \pm 12.6$
Average	$\tau^+\nu$	$(5.58\pm0.35) imes10^{-2}$	255.5 ± 7.5
Average	$\mu^+\nu + \tau^+\nu$		257.5 ± 6.1

TABLE II: Theoretical predictions of $f_{D_s^+}$, f_{D^+} , and $f_{D_s^+}/f_{D^+}$. QL indicates a quenched-lattice calculation, while PQL indicates a partially-quenched lattice calculation. (Only selected results having errors are included.)

Model	$f_{D_s^+}(\text{MeV})$	$f_{D^+}({ m MeV})$	$f_{D_{s}^{+}}/f_{D^{+}}$
Experiment (our averages)	257.5 ± 6.1	206.7 ± 8.9	1.25 ± 0.06
Lattice(HPQCD+UKQCD) [26]	241 ± 3	208 ± 4	1.162 ± 0.009
Lattice (FNAL+MILC+HPQCD) [27]	260 ± 10	217 ± 10	1.20 ± 0.02
PQL [28]	244 ± 8	197 ± 9	1.24 ± 0.03
QL (QCDSF) [29]	$220\pm6\pm5\pm11$	$206\pm6\pm3\pm22$	$1.07 \pm 0.02 \pm 0.02$
QL (Taiwan) [30]	$266\pm10\pm18$	$235\pm8\pm14$	$1.13 \pm 0.03 \pm 0.05$
QL (UKQCD) [31]	$236\pm8^{+17}_{-14}$	$210 \pm 10^{+17}_{-16}$	$1.13 \pm 0.02^{+0.04}_{-0.02}$
QL [32]	$231 \pm 12^{+6}_{-1}$	$211 \pm 14^{+2}_{-12}$	1.10 ± 0.02
QCD Sum Rules [33]	205 ± 22	177 ± 21	$1.16 \pm 0.01 \pm 0.03$
QCD Sum Rules [34]	235 ± 24	203 ± 20	1.15 ± 0.04
Field Correlators [35]	260 ± 10	210 ± 10	1.24 ± 0.03
Light Front [36]	268.3 ± 19.1	206 (fixed)	1.30 ± 0.04