Lattice Meets Experiment Workshop 2010 FNAL, April 26-27

Experimental Status of Semileptonic B Decays |V_{cb}| & |V_{ub}|

Jochen Dingfelder Universität Freiburg

 $B \rightarrow D\ell v \text{ and } B \rightarrow D^*\ell v$

• Differential decay rate:

$$rac{d\Gamma}{dw}(B
ightarrow D\ell
u) \propto (ext{PhaseSpace}) |V_{cb}|^2 |G(w)^2$$

$$w = \frac{m_B^2 + m_D^2 - q^2}{2m_B m_D}$$

$$\frac{d\Gamma}{dw}(B \to D^* \ell \nu) \propto (\text{PhaseSpace}) |V_{cb}|^2 F(w)^2 \sum_{i=+,0,-} |H_i(w)|^2$$

 All recent measurements have adopted the Form factor ansatz by Caprini et al.

From Experiment $|V_{cb}| \times FF(w=1)$ FF parameters: ρ_D for D, ρ_{D^*} , R₁, R₂ for D*

From Lattice

G(1) = 1.074 ± 0.024 (error ~2.2%) Okamoto et al., NPPS 140, 461 (2005) F(1) = 0.921 ± 0.024 (error ~2.6%) C. Bernard et al., Phys. Rev. D79, 014506 (2009)

 $B \rightarrow D^{*} \ell_{V}$ (Belle)

arXiv: 0810.1657 [hep-ex]

Belle preliminary, EPS09

- Study charged and neutral B decays:
 - $B^0 \rightarrow D^{*-}\ell^+\nu$, $D^{*-} \rightarrow D^0\pi^-$ soft
 - $B^+ \rightarrow D^{*0} \ell^+ \nu$, $D^{*0} \rightarrow D^0 \pi^0_{soft}$

Fit to projections in w and decay angles Θ_{ℓ} , Θ_{V} , χ

error on F(1)|V_{cb}|

~3%

~6%

Jochen Dingfelder, Freiburg

"Lattice Meets Experiment" Workshop, Fermilab, April 2010

$B \rightarrow D^{*}\ell_{V}$ (BaBar)

π/6<χ<2π/6

Projections for background subtracted data compared to fit result, for different intervals in χ ;

Increased sensitivity to relative size of helicity terms: R1 and R2!

15,000 Events

Jochen Dingfelder, Freiburg

Simultaneous $B \rightarrow D/D^*\ell_V$ (BaBar)

Phys. Rev. D79, 012002 (2009)

1-D projections for l, D momentum and $\cos \theta_{PV}$ Untagged analysis ("global fit"): D⁰ Select $D\ell_v$ and $D^*\ell_v$ 30000 (no __{soft} reco.!) 20000 dida pipo 10000 Binned 3D fit to p_{ℓ} , p_{D} and $cos\theta_{BY}$ D** p, [GeV/c] $\cos\theta_{_{BY}}$ p_n [GeV/c] • Measure $D\ell v, D^*\ell v$ rates and D Candidates/100MeV FF parameters ρ_D , ρ_{D^*} (,R₁, R₂) Candidates/1.0 Sandidates/100M 40000 10000 5000 • Extract $|V_{cb}|G(1), |V_{cb}|F(1)$ 20000

$$\begin{aligned} \mathcal{G}(1)|V_{cb}| &= (43.1 \pm 0.8 \pm 2.3) \times 10^{-3} \\ \mathcal{F}(1)|V_{cb}| &= (35.9 \pm 0.2 \pm 1.2) \times 10^{-3} \end{aligned}$$

$B \rightarrow D\ell v$ (BaBar)

Phys.Rev.Lett. 104, 011802 (2010)

• Hadronic-tag analysis, 3200 Events!

 Extract signal from missing mass in 10 w bins

• Combined results of both BaBar B \rightarrow D ℓv analyses:

$$\begin{split} G(1)/V_{cb}| &= (42.4 \pm 0.7 \pm 1.6) \times 10^{-3} \\ \rho^2 &= 1.18 \pm 0.04 \pm 0.04 \\ Br(B^0 {\rightarrow} D\ell \nu) &= (2.16 \pm 0.08)\% \end{split}$$

Error on G(1)|V_{cb}| reduced to 4% (1-2 years ago: >10%)

Consistency of $|V_{cb}|$ from $B \rightarrow D^{(*)} \ell_V$

Jochen Dingfelder, Freiburg

"Lattice Meets Experiment" Workshop, Fermilab, April 2010

Problem with BF and FF for $B \rightarrow X_c \ell_V$ Decays

- Additional s.I. decays with D^{**} (narrow: D₁, D₂*, broad D₁', D₀*)
 - Narrow states agree for Belle (tagged), BaBar (tagged+untagged), D0
 - Broad states not well known: D_0^* agrees for BaBar+Belle, D_1^{\prime} not seen by Belle
 - Contribution from broad states larger than predicted!
- Sum of D/D*/D** $\ell \nu$ does not saturate total B \rightarrow X_c $\ell \nu$ branching fraction

 $\mathcal{B}(B^{0} \rightarrow X_{c} \ell \nu) > \mathcal{B}(B^{0} \rightarrow D \ell \nu) + \mathcal{B}(B^{0} \rightarrow D^{*} \ell \nu) + \mathcal{B}(B^{0} \rightarrow D^{*} \ell \nu)$ [10.1 ± 0.4]% > [2.17 ± 0.12]% + [5.16 ± 0.11]% + [1-2]%

- •Explanations for missing BF::
 - non-resonant $(D/D^* + n\pi)\ell_V$ (n≥2)
 - non-resonant (D/D* + η) $l_{\rm V}$
 - radial excitations (?)
 - unmeasured D** decay modes
 (not all D** branching fractions known)?

 \Rightarrow ~15% missing

But: so far no evidence
for non-resonant charm
states, but sensitivity
remains limited

Conclusions for |V_{cb}|

- F(1) |Vcb| determined by fit over entire w range, requires parameterization!
- Thus |V_{cb}| depends on F(1) from LQCD, and also on FF parametrization!
- Predictions for w>1 from LQCD would reduce uncertainty!
- Desired experimental improvements:
 - Analyses on full B-Factory data sets, e.g.
 B→Dℓv from Belle (720 fb⁻¹)
 - B→D*ℓv measurement with fit in 4 dimensions, interference terms! higher sensitivity to R₁, R₂, and ρ²
 - Hadronic-tag measurements at SuperB measurements of D** states

Exclusive $|V_{cb}| \sim 2\sigma$ lower than inclusive $|V_{cb}|$!

$|V_{ub}|$ from $B \rightarrow \pi \ell v$

Background Suppression

Neural-Net discriminators for each q² bin for each of 3 main backgrounds

$B \rightarrow \pi/\rho \ell_V$ Signal Extraction

- Extract signal yield in bins of q^2 from fit to 2D $\Delta E m_{ES}$ distribution
- Simultaneous 4-mode fit $(\pi^{\pm},\pi^{0},\rho^{\pm},\rho^{0})$ assuming isospin symmetry

$B \rightarrow \pi \ell_V$ Branching Fraction

BaBar preliminary:

 $\mathcal{B}(B^0 \to \pi^- \ell^+ \nu) = (1.41 \pm 0.05 \pm 0.07) \times 10^{-4}$

- Hadronic tag events provide very low background sample, B charge, flavor, and momentum!
- Yield of had. tagged events very low:
 ~100 B⁰→π[±]ℓ_ν / ab⁻¹
- Need ~10 ab⁻¹ (~1000 B⁰→π[±]ℓν) to measure shape of distribution!

HFAG average:

 $\mathcal{B}(B^0 \to \pi^- l^+ \nu) = (1.36 \pm 0.05 \pm 0.05) \times 10^{-4}$

Jochen Dingfelder, Freiburg

$B \rightarrow \pi \ell v$ Systematic Errors

q ² range (GeV ²)	0-4	12-16	>20	
Reco./ID efficiencies (tracks, γ , e, μ)	5%	5%	4%	
K _L production and interactions	2%	6%	5%	
B→X _u ℓv BF and SF param.	<1%	<1%	6%	
Continuum bkg	5%	2%	6%	
Total	8%	8%	11%	

What can be improved?

- track & photon reconstruction, KL rates \Rightarrow better v reconstruction
- study of charm fragmentation to correct simulation (untagged only)
- More precise measurements of incl. and excl. $B \rightarrow X_u \ell v$
- BF and dynamics, FF, of $B \rightarrow X_u \ell v$ background

|Vub| from "Classic Method"

$\Delta \zeta(q^2_{min},q^2_{max}) = rac{G_F^2}{24\pi^3} \int\limits_{q^2_{min}}^{q^2_{max}} p^3_\pi f_+(q^2) ^2 dq^2$				
	q^2 Range	$\Delta \zeta$	$ V_{ub} $	
	$({ m GeV}^2)$	(ps^{-1})	(10^{-3})	
$B \to \pi \ell \nu$				
LCSR [15]	0 - 16	$5.44{\pm}1.43$	$3.63 \pm 0.12^{+0.59}_{-0.40}$	
HPQCD [22]	16 - 26.4	$2.02{\pm}0.55$	$3.21 \pm 0.17^{+0.55}_{-0.36}$	

Exp. error: 3-5% Theory error dominant: -11%, +17%

|Vub| results for LCSR, HPQCD consistent with previous BaBar publication Phys. Rev. Lett. 98, 091801 (2007)

 \Rightarrow expect no significant improvement for $|V_{ub}|$ for this method) \Rightarrow make use of improved shape measurement in data

Form-Factor Parameterizations

- 1. Becirevic-Kaidalov (BK) $f_{+}(q^{2}) = \frac{f_{+}(0)}{(1 - q^{2}/m_{B^{*}}^{2})(1 - \alpha_{BK}q^{2}/m_{B^{*}}^{2})}$
- 2. Ball-Zwicky (BZ)

$$\begin{split} f_{+}(q^{2}) &= f_{+}(0) \bigg[\frac{1}{1 - q^{2}/m_{B^{*}}^{2}} \\ &+ \frac{r_{BZ}q^{2}/m_{B^{*}}^{2}}{(1 - q^{2}/m_{B^{*}}^{2})(1 - \alpha_{BZ}q^{2}/m_{B^{*}}^{2})} \bigg] \end{split}$$

- 3. Boyd, Grinstein, Lebed (BGL) $f_{+}(q^{2}) = \frac{1}{\mathcal{P}(q^{2})\Phi(q^{2}, q_{0}^{2})} \sum_{k=0}^{\infty} a_{k}(q_{0}^{2})[z(q^{2}, q_{0}^{2})]^{k}$ $z(q^{2}, q_{0}^{2}) = \frac{\sqrt{m_{+}^{2} - q^{2}} - \sqrt{m_{+}^{2} - q_{0}^{2}}}{\sqrt{m_{+}^{2} - q^{2}} + \sqrt{m_{+}^{2} - q_{0}^{2}}}$
- 4. Bourrely, Caprini, Lellouch (BCL)

$$f_{+}(q^{2}) = rac{1}{1-q^{2}/m_{B^{*}}^{2}} \sum_{k=0}^{k_{max}} b_{k}(q_{0}^{2}) \{ [z(q^{2},q_{0}^{2})]^{k} - (-1)^{k-k_{max}-1} rac{k}{k_{max}+1} [z(q^{2},q_{0}^{2})]^{k_{max}+1} \}$$

- Fit to data very similar for all four parametrizations
- Current exp. precision cannot constrain more than 3 shape parameters

Jochen Dingfelder, Freiburg

Some Comments on "P $\Phi f_+ vs. z''$

Presentation of data in term of $P\Phi f+(z)$ is not without problem and combined fit of data and LQCD prediction is problematic:

- 1. Translation of binned $\Delta B/\Delta q^2$ data spectrum to P Φf_+ : P=P(q²), $\Phi = \Phi(q^2)$, $p_{\pi} = p_{\pi}(q^2)$ \Rightarrow prefer fit to $\Delta B/\Delta q^2$
- 2. Large correlations between LQCD points result in instability of fit: For FNAL/MILC:
 - neighboring points : $\rho=99\%$
 - next neighbor still : $\rho=95\%$

 \Rightarrow reduce # LQCD points in fit

Theorists, please provide values for all relevant parameters (masses, numerical factors, etc.) used in your calculation in the publication!

|Vub| from "LQCD+BaBar Fit"

Currently most precise exclusive |V_{ub}| determination: ~10%

Inclusive vs. Exclusive |Vub|

Difference between inclusive and exclusive $|V_{ub}|$ determinations has increased again !

BABAR: $B \rightarrow \rho \ell_V - A Cross-Check?$

BABAR: to be submitted to PRD

Belle: arXiv: 0812.1414 [hep-ex]

$B \rightarrow \rho \ell v$ (untagged) Systematics

q ² range	0-8	8-16	16-20.3
B→X _u ℓv BF and SF param.	14%	11%	17%
B→ρℓv FF's (A₁,A₂,V)	14%	8%	6%
K _L production and interactions	11%	6%	9%
Continuum bkg	9%	4%	5%
Total	26%	16%	21%

Much larger syst. errors than for π !

What can be improved?

- Extend measurement over larger phase space (lower pℓ cut, currently at 1.8 GeV. ⇒ reduce FF model dependence
- Suppress or improve knowledge of $B \rightarrow X_u \ell v$ background
 - Need high-statistics tagged sample (Super B Factory)
 - Constrain combinatorial background from data, e.g. $M_{\pi\pi}$ sidebands

Other Resonances: $B \rightarrow \eta/\eta'/\omega \ell_V$

• Current signal yields for untagged and tagged measurements:

Untagged			Tagg	ed
Mode	N(signal)	Experiment	N(signal)	Experiment
$\pi^{\pm}+\pi^{0}$	~ 12000	BaBar (~350 fb⁻¹)	110	Belle Breco(~600 fb ⁻¹)
ρ [±] +ρ ⁰	~ 5000	BaBar (~350 fb ⁻¹)	145	Belle Breco (~600 fb ⁻¹)
η	~ 660	BaBar (~420 fb⁻¹)	55	BaBar sl. tag (~350 fb ⁻¹)
η'	~ 125	BaBar (~420 fb⁻¹)	-	BaBar sl. tag (~350 fb ⁻¹)
ω	~ 500	BaBar (~350 fb ⁻¹)	25	Belle Breco (~600 fb ⁻¹)

Close to "last word" from BaBar (* expectation, unofficial)

Update of Belle Breco analyses $\Rightarrow N \times 1.5$?

Conclusions on |Vub|

- Improveed measurement of B→πIv form-factor shape from data combined with LQCD predictions in simultaneous fit to BGL ansatz reduced theory error, $\sigma |V_{ub}| \sim 10\%$
- Unfortunately LQCD predictions are only available in a region where data rate is small (∝p_π³) and experimental errors are large!
- Further improvement in LQCD predictions:

• Yet more precise $f_+(q^2)$ calculations, if possible at lower q^2 and fewer points

✤ Predictions for B → $\rho/\omega/\eta I_V$ FF to enable extraction of |Vub| from these processes and insight into cause for difference of inclusiveexclusive |V_{ub}| measurements???. Many thanks to the lattice community for organizing this workshop and for close collaboration over many years on several topics!

My colleague Jochen Dingfelder and I have benefitted greatly from working with you! Thank you!

$|V_{ub}|$ Fit: P Φf_+ vs. z

• Translation of " $\Delta B/\Delta q^2$ vs. q^2 " fit results to "P Φf_+ vs. z"

Higher-Mass States: $D^{**} \rightarrow D^{(*)} \ell_V$

Jochen Dingfelder, Freiburg

Higher-Mass States: $D^{**} \rightarrow D^{(*)} \ell_V$

Decay Mode	Yield	$\mathcal{B} (\bar{B} \to D^{**} \ell^- \bar{\nu}_\ell) \times \mathcal{B} (D^{**} \to D^{(*)} \pi) \% (\text{BELLE})$	BABAR Yield	BABAR Branching Fraction
$D\pi$ invariant mass fit				
$B^- \rightarrow D_0^{*0} \ell^- \bar{\nu}_\ell$	102 ± 19	$0.24 \pm 0.04 \pm 0.06$	137 ± 26	$0.26 \pm 0.05 \pm 0.04$
$B^- \rightarrow D_2^0 \ell^- \bar{\nu}_\ell$	94 ± 13	$0.22 \pm 0.03 \pm 0.04$	97 ± 16	$0.15 \pm 0.02 \pm 0.01$
$\bar{B}^0 \rightarrow D_0^{*+} \ell^- \bar{\nu}_\ell$	61 ± 22	$0.20 \pm 0.07 \pm 0.05$	142 ± 26	$0.44 \pm 0.08 \pm 0.07$
$\bar{B}^0 \rightarrow D_2^+ \ell^- \bar{\nu}_\ell$	68 ± 13	$0.22 \pm 0.04 \pm 0.04$	29 ± 13	$0.07 \pm 0.03 \pm 0.01$
		$D^*\pi$ invariant mass fit		
$B^- \rightarrow D_1^{\prime 0} \ell^- \bar{\nu}_\ell$	-5 ± 11	< 0.07 @ 90 CL	142 ± 21	$0.27 \pm 0.04 \pm 0.05$
$B^- \rightarrow D_1^0 \ell^- \bar{\nu}_\ell$	81 ± 13	$0.42 \pm 0.07 \pm 0.07$	165 ± 18	$0.29 \pm 0.03 \pm 0.03$
$B^- \rightarrow D_2^0 \ell^- \bar{\nu}_\ell$	35 ± 11	$0.18 \pm 0.06 \pm 0.03$	40 ± 7	$0.07 \pm 0.01 \pm 0.006$
$\bar{B}^0 \rightarrow D_1^{\prime +} \ell^- \bar{\nu}_\ell$	4 ± 8	< 0.5 @ 90CL	86 ± 18	$0.31 \pm 0.07 \pm 0.05$
$\bar{B}^0 \rightarrow D_1^+ \ell^- \bar{\nu}_\ell$	20 ± 7	$0.54 \pm 0.19 \pm 0.09$	88 ± 14	$0.27 \pm 0.05 \pm 0.03$
$\bar{B}^0 \rightarrow D_2^+ \ell^- \bar{\nu}_\ell$	1 ± 6	< 0.3 @ 90 CL	12 ± 5	$0.03 \pm 0.01 \pm 0.006$

- Narrow D** states agree for Belle, BaBar (tagged+untagged), D0
- Results for broad D₀* consistent for BaBar and Belle
- BaBar observes D₁', Belle does not !
- Contribution from broad (1/2⁻) states larger than predicted by theory!
 "3/2 > 1/2 puzzle"

Narrow D** Resonances

Recent measurements of narrow states in good agreement, also for tagged and untagged methods! Partial BF for D** still not known!

Broad D** Resonances

The situation is less clear for the broad states ... ! Masses, widths, and partial BFs of broad D** not well known!