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After reviewing recent successes of lattice QCD over a broad range of topics, we discuss how
lattice QCD calculations can reduce the hadronic uncertainty in the Standard-Model prediction for
the anomalous magnetic moment of the muon, g − 2.

I. INTRODUCTION

During the past decade, lattice QCD has made sub-
stantial progress in several areas that influence parti-
cle physics, nuclear physics, and astrophysics. Once
enough computing and algorithmic power became avail-
able to treat virtual quark-antiquark pairs (the “sea”
quarks) realistically, the results of lattice-QCD calcula-
tions rapidly reproduced a wide variety of hadron prop-
erties [1]. The same techniques then enabled genuine
predictions of D meson semileptonic form factors, D-
and Ds-meson leptonic-decay constants, and the mass
of the Bc meson [2]. Lattice QCD now plays an impor-
tant role in quark flavor physics, yielding indispensible
results for neutral meson mixing and leptonic decay rates,
and important results for semileptonic form factors [3, 4].
These results not only constrain the Cabibbo-Kobayashi-
Maskawa (CKM) matrix but also enable indirect searches
for new particles.

The success of lattice QCD is not confined to flavor
physics alone. The nucleon mass, one of the original ob-
jectives, has been computed with a precision of about
2% [5]. Nambu’s ideas of spontaneous chiral symmetry
breaking, once strong beliefs, have been verified via direct
calculation from the QCD Lagrangian [6]. Connected
to these developments are the only ab initio determina-
tions of the light-quark masses [7]: the up-, down-, and
strange-quark masses turn out to be small—about four,
nine, and 180 times the electron mass, respectively. Lat-
tice QCD meanwhile provides the most accurate deter-
minations of the strong coupling αs [8] and competitive
determinations of the bottom- and charm-quark masses.
These results connect the QCD probed in high-energy
processes with the QCD description of hadrons.

With matrix elements from flavor physics and the nu-
cleon mass under control, a next step is to compute nu-
cleon matrix elements [9]. These are helpful for inter-
preting experiments on the neutron electric dipole mo-
ment, nucleon β decay, and nucleon structure, as well as
planning searches for proton decay. Another recent de-
velopment is the calculation of virtual hadron properties,
which influence electroweak parameters. One example is
the evolution of QED’s fine structure constant from elec-
tronic to Z-pole scales. More prominent for the intensity
frontier are related calculations of hadronic contributions
to the muon’s anomalous magnetic moment [10, 11].

There are many other lattice-QCD calculations that
are beyond the scope of this document, which we shall
mention only briefly. Together with the CKM matrix, the
quark masses and αs constrain speculation about unifi-

cation of the forces and other physics beyond the reach
of accelerators. Calculations of the strangeness content
of the nucleon are needed to understand dark-matter de-
tection experiments [12, 13]. Studies of the QCD phase
transition with lattice QCD have shown that the quark
masses, though small, are just large enough to make the
transition a crossover [14, 15]. Previously, research on
the early universe assumed the transition was of first or-
der, with phenomena like bubbles of hadrons; we now
know that the universe did not cool this way. Calcula-
tions of hadron-hadron interactions help us understand
the physics of neutron stars, particularly whether neu-
trons could dissociate into KΛ pairs [16]. Lattice gauge
theories varying the number of colors and matter content
are shedding light on the dynamics of technicolor models
of electroweak symmetry breaking [17].

The rest of this document is organized as follows. Sec-
tion II reviews in detail how lattice QCD plays a key
role in determining the hadronic contributions to muon
g−2. We address both the hadronic vacuum polarization,
which seems well under control, and the hadronic light-
by-light contribution, where new ideas may be needed.
In Sec. III, we present forecasts of future precision that
we expect to obtain in hadronic vacuum polarization. We
conclude with some remarks of the broader role of lattice
QCD at the intensity frontier in Sec. IV.

For similar information on quark-flavor physics and nu-
cleon properties, please consult documents submitted to
the Heavy-quark and Nucleons/nuclei/atoms WGs, re-
spectively.

II. HADRONIC CONTRIBUTIONS TO g − 2
AND LATTICE QCD

The measured value of the anomalous magnetic mo-
ment is in apparent disagreement with theoretical cal-
culations based on the Standard Model (SM). The BNL
E821 experiment finds [18]

aµ(Expt) = 116 592 080(54)(33)× 10−11, (1)

where aµ = (g − 2)/2 and the errors are statistical and
systematic, respectively. This can be compared with the
SM prediction [19]

aµ(SM) = 116 591 802(42)(26)(02)× 10−11, (2)

where the errors are from lowest-order—O(α2)—
hadronic contributions, higher-order hadronic contribu-
tions, and all others. The discrepancy between the mea-
surement and the SM is 3.6σ. (There are many assess-



2

ments of the SM contribution to g−2; here we take results
from one source, Ref. [19], for convenience.)

The hadronic contributions enter at order O(α2) (vac-
uum polarization) and O(α3) (light-by-light scattering)
in the fine-structure constant. The former are roughly
17,000 times smaller than the measured value, while the
latter are roughly 1 million times smaller. Because the
experimental error is so small, about 0.5 ppm, these con-
tributions must be included accurately in order to test
the SM or use the discrepancy as a probe of new physics.
Moreover, the new Fermilab experiment E989 aims to re-
duce the uncertainty to 0.14 ppm, providing a challenge
to theorists to reduce the hadronic uncertainty in a com-
mensurate way.

The hadronic vacuum polarization (HVP) contribution
to aµ(SM) is computed from the two-point correlation
function of the electromagnetic current of the quarks,
Fourier transformed to 4-momentum space, and inserted
into a one-loop QED integral for the interaction of the
muon with an external field, as sketched in Fig. 1. It dom-
inates the total SM uncertainty: QED and electroweak
uncertainties are about 100 and 1000 times smaller, re-
spectively, so they will not be relevant even for the new
Fermilab experiment. The most accurate value for the
HVP contribution [19]

aµ(HVP) = 6923(42)× 10−11 (3)

is determined from a dispersion relation for the correla-
tion function combined with the cross section for e+e− →
hadrons. Using τ → hadrons for part of the cross section
leads to a somewhat smaller discrepancy, 2.4σ.

FIG. 1: The hadronic vacuum polarization diagrams con-
tributing to aµ(SM), the muon anomaly in the standard
model. The horizontal lines represent the muon. Upper panel:
the blob formed by the quark-antiquark loop represents all
possible hadronic intermediate states. Lower panel: discon-
nected quark-line contribution, in which separate quark loops
are connected by gluons.

The e+e−-scattering and τ -decay determinations of
aµ(HVP) do not agree with each other very well. Some
of the e+e− data sets do not agree especially well with
each other. In order to insert the e+e− data into Fig. 1,
radiative corrections must be applied. In order to apply
τ -decay data, isospin correction must be taken into ac-
count, which can entail hadronic uncertainties [20, 21].
These difficulties can be circumvented by computing the
HVP directly in QCD.

The HVP resides naturally in the spacelike, or Eu-
clidean, momentum regime, making it a natural quantity
to compute with lattice gauge theory [10]. Spurred by
both the discrepancy and the prospects for further im-
provements in the measurement, several groups are cal-
culating this quantity in QCD with nf = 2 + 1 flavors of
sea quarks [22, 23] and with nf = 2 [24, 25]. The most
commonly used method computes the vacuum polariza-
tion function at several values of spacelike momentum,
fits the result to a smooth function and integrates over
the loop momentum in Fig. 1. A conservative estimate
of the current total accuracy from this technique is 5–
10%. A recent calculation using only two flavors of sea
quarks and a novel chiral extrapolation quotes a some-
what smaller 3% error [25]. This should be viewed as a
proof of principle, and the same group is repeating their
calculation with 4 flavors of sea quarks.

The dominant contribution to aµ(HVP) comes from
very low momenta, p ∼ mµ [10]. This is a challenge for
numerical lattice QCD, because finite computer resources
dictate a finite spatial volume, hence, discrete momenta.
With typical box sizes L ≈ 2–3 fm, a unit of momen-
tum 2π/L ≈ 400–600 MeV. To reach momenta as small
as mµ, typically an extrapolation is carried out. The
statistical errors increase as the momenta is decreased,
making the extrapolation difficult. Alternatively, one can
also use twisted-boundary conditions to enforce arbitrary
momenta on the box [23, 24], but this does not improve
the statistical errors on small momenta. The biggest dif-
ficulty is the sensitivity to the fit function used in the
extrapolation to low momenta [22]. Methods to reduce
this sensitivity have been proposed [23, 25]. It is also
possible to access small time-like momenta on the lat-
tice [26], and calculations of the pion form factor can be
used to improve the low-momentum part of the disper-
sive calculation [27, 28]. Note, however, that there are
many applications of lattice QCD that will profit from
larger L, so these problems should become less severe
even without better methods.

The computation of the hadronic-light-by-light
(HLbL) contribution is much more challenging. The size
of the HLbL contribution

aµ(HLbL) = 105(26)× 10−11, (4)

is not well known: it is based on a consensus on the size
of various hadronic contributions estimated in several dif-
ferent models [29]. Its uncertainty, though less than that
in aµ(HVP), seems harder to reduce. Finding a new ap-
proach, such as lattice QCD, in which uncertainties are
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systematically improvable, is crucial for making greatest
use of the new Fermilab experiment. With this in mind,
E989 recently convened a workshop at the Institute for
Nuclear Theory [11]. Workshop participants discussed
how models, lattice QCD, and data-driven methods could
be exploited to reduce the error on aµ(HLbL). The out-
come of this workshop is that a synthesis of all these
methods can be used over the next five years to reduce
the error on aµ(HLbL) to 10% or less.

In the context of lattice QCD, two direct methods for
computing the HLbL amplitude are under investigation.
One approach, analogous to the HVP calculation, is to
compute the correlation function of four electromagnetic
currents in QCD and use it to do the two-loop QED in-
tegrals of the diagrams in Fig. 2. The second approach
is to calculate the entire amplitude of Fig. 2 with lat-
tice gauge theory, including both photons and leptons as
lattice fields, even though the QED coupling constant is
small.

In the first method, the four-point amplitude is com-
puted for each possible momentum at each of the four
electromagnetic vertices. The resulting four-index tensor
is fit to a smooth function of the momenta, and plugged
into the two-loop QED integrals. The momentum at the
external vertex is taken to zero, so overall momentum
conservation leads to two independent momenta to in-
tegrate over, a costly four-volume-squared computation.
These calculations are still in an exploratory phase.

Alternatively, in the second method, the full ampli-
tude shown in Fig. 2, including the muon and photons, is

FIG. 2: The hadronic light-by-light scattering diagrams con-
tributing to aµ(SM), the muon anomaly in the standard
model. The horizontal lines represent the muon. Upper
panel: the blob formed by the quark loop represents all possi-
ble hadronic intermediate states. Lower panel: disconnected
quark-line contribution, in which separate quark loops are
connected by gluons.

computed nonperturbatively [30]. The calculation pro-
ceeds just like a conventional QCD calculation, except
the gauge link becomes a combined gluon and photon
field [31]. Being a calculation that includes all orders
in α, a nonperturbative subtraction of the leading QED
contributions is required. By subtracting the product of
muon and quark correlation functions from the original
combined function, the HLbL contribution is obtained,
plus terms of order O(α4). The leading α2 pieces in the
original correlation function and subtraction are iden-
tical, so cancel completely, as do all α3 contributions
except the desired contribution from HLbL [30]. This
method is under active research and development, as de-
scribed below.

In addition to these direct approaches, there is ongoing
work on lattice-QCD calculations that check or supple-
ment the model calculations. For example, it is well-
known that the pion pole (namely, γγ∗ → π → γ∗γ∗)
provides the largest contribution to the QCD blob in
Fig. 2. Just as experiments are being mounted to ex-
amine this physics (e.g., PrimEx at JLab and KLOE at
LNF), several groups [26, 32, 33] are using lattice QCD
to compute the amplitudes for π → γγ∗ and π → γ∗γ∗

(with one or two virtual photons).

III. FORECASTS

In order to make forecasts of the precision attainable
in future lattice-QCD calculations, one must begin with
assumptions about the computing landscape. The dis-
cussion here is given from the perspective of the USQCD
Collaboration, an umbrella organization that coordinates
computing and software for the US lattice-gauge-theory
community. Once assumptions about the cost and avail-
ability have been spelled out, we can proceed to fore-
casting the precision that can be attained for the most
important flavor-physics matrix elements.

A. Assumptions

The DOE HEP and NP program offices fund dedicated
computing resources for lattice gauge theory through the
LQCD Infrastructure Project on behalf of the USQCD
Collaboration. The Collaboration then allocates these
computing resources to its members. This Project has
a decade’s experience constructing computing clusters
based on Intel or AMD chips and has, thus, been able to
measure the cost per delivered floating-point operation
per second (flop/s). The measurements of flop/s deliv-
ered are based on real computations of two of the most
popular quark propagators, and the performance relies on
a low-latency network; in practice, recent clusters have
used Infiniband. Over several years’s experience, includ-
ing our most recent clusters, 10q and Ds, we remain on
a trend line, for which costs halve in 1.6 years.
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The LQCD Project received $9.2M for four years,
FY2006–2009. The Project is now being extended for
another four years with approximately $4M per annum.
For our forecasts below, we assume that the budget will
remain flat and that the costs will fall close to the his-
torical trend line.

In addition to its dedicated high-capacity hardware,
which is used mostly for physics analysis, USQCD has
received significant resources from the DOE’s leadership-
class computing facilities at Argonne and Oak Ridge
National Labs. USQCD has mostly used these high-
capability resources to generate the ensembles of lattice
gauge fields that underlie all physics projects. Groups
within USQCD also receive significant resources on su-
percomputers at NERSC and at the centers supported
through the NSF’s XSEDE Program. Here we assume
that USQCD and its members will receive a similar frac-
tion of the planned upgrades to these facilities.

A further assumption we must make is for software
support. The Moore’s Law seen in our clusters has, lately,
depended on new CPUs with many cores. In the last
two years, a further hardware development has been use
of graphics cards (GPUs), which have hundreds of cores.
USQCD has been able to respond to these changes thanks
to software funding from the DOE’s SciDAC program.
We assume that this, or equivalent, support will continue.
Indeed, if GPUs live up to their early promise, the cost
of computing may fall faster than our observed trend; we
do not, however, assume such decreases here.

Until recently, lattice-QCD calculations of HVP and,
especially, HLbL have consumed a small fraction of the
computing resources available for lattice QCD. With
more and more groups being motivated by the new ex-
periment to address these problems, it seems natural that
more computing resources will be devoted to these prob-
lems. However, even though we expect several teams to
be working on g−2, here we do not reduce error forecasts
by imagining an average over several results. We take
the perspective that lattice-QCD calculations are still in
an era where cross-checks are affordable and desirable.
Methods for the HLbL contribution, in particular, are
still developing.

Finally, we assume that funding to support junior
researchers—graduate students, postdocs, and junior
faculty—does not decrease.

B. Forecasts

To match the expected uncertainty of the new Fermilab
experiment, the theoretical errors on both aµ(HVP) and
aµ(HLbL) will have to be reduced to the level of 10 ×
10−11. This corresponds to reducing the error on the
HVP contribution by a factor of 4, and the error on the
HLbL contribution by a factor of 2.5.

The sources of uncertainty on the HVP are typical
in lattice calculations: statistical, finite volume, nonzero
lattice spacing, and (chiral) extrapolation to the physical
quark masses. We briefly discuss each.

For the HVP there is no obstacle in attaining sub-
percent statistical precision (except for the so-called dis-
connected diagram shown in the lower panel of Fig. 1,
which we discuss below). We assume that all future cal-
culations will achieve this.

Nonzero lattice spacing errors are small with modern
lattice actions, and several (three or more) spacings can
be used to essentially eliminate these by extrapolation.

Next, systematic uncertainty stems from the chiral ex-
trapolation to the physical quark masses. The quark
mass dependence of aµ(HVP) is very large [22–24], owing
to the ρ pole in the timelike region. A recent 2-flavor cal-
culation [25] has shown that adjusting the kernel in the
QED one-loop integral dramatically reduces the depen-
dence of aµ(HVP) on the quark mass [25]. Furthermore,
lattice-QCD calculations at physical quark mass, which
are now starting [34–36], avoid these issues.

Finally, there are so-called disconnected diagrams—
lower panel, Fig. 1—that have not yet been included in
lattice-QCD calculations of the HVP. (In lattice jargon,
quark lines or loops connected only by gluons, are called
disconnected, because the avergage over gauge fields in-
cludes all gluons as a matter of course.) Their contri-
bution cancels in the SU(3) flavor limit and is Zweig-
supressed. One group found them to be zero within sta-
tistical errors [25], but in chiral perturbation theory their
value is known to be a significant fraction of the con-
nected contribution of the pions [37], so more work is
needed to nail down their contribution which could be
as large as 1–2%. Low eigenmode methods, which are
becoming standard, should help significantly here.

In summary, the systematic errors are well understood,
and with concerted effort and sufficient computational
resources, as outlined above, they will be brought under
full control. Taking all of the above into account, we
see no obstacle to reduce the lattice-QCD uncertainty
on aµ(HVP), currently ∼ 5%-level, down to the 1–2%
level within the next 3–5 years. This stage is already in-
teresting, because it could help resolve tension between
the timelike methods for determining aµ(HVP). With
increasing experience and computer power, it should
be possible to compete with the e+e− determination of
aµ(HVP) by the end of the decade.

The state of the HLbL calculation is less well under-
stood, and the calculations are still at a very early stage.
The LbL amplitude in pure QED has been calculated us-
ing the nonperturbative method [30] described in Sec. II.
The result is consistent with well-established perturba-
tive results, albeit with large finite volume corrections
since the test was done on a small lattice. Subsequent
tests on a larger volume show the finite-volume errors
are manageable. Using the same method, pilot calcula-
tions for the HLbL amplitude appear promising: statis-
tically significant results are obtained. Done at unphysi-
cal quark and muon masses, and at non-zero momentum
transfer, these are not yet directly comparable to model
calculations, but on-going calculations are moving in this
direction. As with the HVP, the quark-line disconnected
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diagram shown in Fig. 2 has not yet been calculated.
Except for being Zweig-supressed, there is no reason to
expect its contribution to be small compared to the con-
nected one.

For the conventional method described in Sec. II,
all-to-all propagator techniques are being developed to
tackle the four-point vector-current correlation function.
Exploratory calculations are needed to begin to under-
stand the systematics and required level of statistics. It
is also cumbersome in a mundane way: the four-point
function has over 100 Lorentz structures, of which 32
contribute to g−2. With no real benchmark calculations
as a starting point, it is hard to forecast the level of accu-
racy on the HLbL amplitude. That said, this challenging
problem is attracting considerable attention: reducing
the error on aµ(HLbL) to 10% within five years (with
lattice QCD alone) is neither guaranteed nor out of the
question.

Short of a full lattice-QCD calculation of aµ(HLbL),
there are intermediate steps that are less expensive and
will be taken along the way. First, one may simply com-
pute only a few, well-chosen values of the momenta and
use these to check model calculations. With enough val-
ues, a smooth function may be fit to them to fill in the
rest, assuming a well-motivated functional form can be
found. Second, the more straightfoward computations of
the pion to off-shell photons, described in Sec. II, will
provide data for the models, in a way complementary to
the two-photon experimental data.

We close by reiterating that lattice QCD can point to
success over a wide range of problems, and the challenge
that g − 2 presents is generating many ideas. It may
well be that the idea that solves the problem is not yet
available.

IV. OUTLOOK

The intensity frontier complements high-pT physics in
at least two ways. Observations discrepant with the Stan-
dard Model are discoveries in their own right. More
generally, precise measurements offer constraints on the
identity of high-mass particles, such as those that may
be observed at the LHC.

The interpretation of precise experiments at the inten-
sity frontier requires comparable precision in the corre-
sponding theoretical calculations. In many experiments
at the intensity frontier, hadrons are involved in an es-
sential way, leading inevitably to the need to calculate
hadronic properties, in particular matrix elements of op-
erators that arise when integrating out short-distance SM
or BSM particles. Even in some leptonic observables,
the precision is such that virtual hadrons make a sig-
nificant contribution. Lattice gauge theory provides a
set of numerical methods for computing these hadronic
properties, within a framework where uncertainties can
be systematically reduced.

In the past several years, the right combination of algo-
rithms, computing power and infrastructure, and collab-
oration structure has come together, leading to a plethora
of results. Some of these results are quantitatively im-
pressive and bode well for future experiments at the in-
tensity frontier. Others are qualitatively interesting and
connect to the energy and cosmic frontiers. We see spe-
cial opportunities in quark flavor physics, nucleon matrix
elements, and muon g − 2. With continued support, we
look forward to the coming decade’s interplay between
experiment, theory, and lattice QCD.
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