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Preamble
To a large extent complex many body interactions control the various phases of strong interaction

matter that are of relevance for our understanding of the nuclear force and its role in determining the

structure of nuclear matter. Accounting for their effects quantitatively requires nonperturbative

techniques, such as the numerical simulation of lattice-regularized Quantum Chromodynamics

(QCD). Such simulations are of particular importance in the temperature range close to phase

changes, where properties of the matter change rapidly. This temperature range is currently

probed experimentally in relativistic heavy ion experiments.

The decadal research program in QCD thermodynamics, using numerical simulations of lattice

QCD, has to a large extent been described in a Scientific Grand Challenge report issued by the

U.S. Department of Energy in 2009 [1]. We will discuss here the achievements of recent years and

will outline the next steps that need to be taken to reach our goal of understanding the phases of

strongly interacting matter and the role they play in the cosmos (NSAC 2007).

This white paper describes the opportunities for lattice QCD to play a key role in supporting

the future experimental relativistic heavy ion program, and discusses the plans of the U.S. lattice

QCD Collaboration (USQCD) for the next five years in this area. Companion documents on Lattice

QCD for Cold Nuclear Physics, Lattice Gauge Theory for Physics on the Intensity Frontier and

Lattice Gauge Theory for Physics on the Energy Frontier address prospects in other areas of nuclear

physics and high-energy physics for which lattice calculations are essential. They can be found on

the homepage of USQCD: http://www.usqcd.org

ii



I. INTRODUCTION

During the last decade our understanding of properties of strong interaction matter at high
temperature and vanishing as well as nonvanishing baryon number density has witnessed
tremendous progress. Experiments performed at the Relativistic Heavy Ion Collider (RHIC)
at Brookhaven National Laboratory (BNL) have made it evident that matter at temperatures
close to, but above the QCD transition temperature exhibits properties far more complex
than could have been expected for a thermal medium described by perturbative QCD in the
asymptotically free regime [2, 3]. The system seems to be strongly coupled with a surprisingly
small ratio of shear viscosity over entropy density. Nonperturbative calculations within the
framework of lattice QCD had predicted this [4] as the equation of state close to, but above
the transition temperature is far from being that of an ideal gas. Instead, it has a large trace
anomaly and screening of heavy quark free energies as well as thermal masses still exhibit
confining features in the sense that the heavy quark potential still allows for bound hadronic
states even at temperatures above the crossover transition. However, these statements still
suffer, to some extent, from the artifacts of contemporary lattice calculations that arise
from discretization errors or a still only approximate implementation of symmetries of the
continuum theory. Refining them will be a major challenge for lattice QCD calculations in
the coming years.

During the next years we will see a large number of new experimental results from heavy
ion experiments at RHIC as well as the Large Hadron Collider (LHC) at CERN. The latter
will probe the high temperature phase of QCD at (almost) vanishing net baryon number in
a wider temperature range, providing new information about thermal dilepton and photon
emission from the quark-gluon plasma, heavy quark bound states, the equilibration and
diffusion of light and heavy quarks in dense matter, as well as information about other
transport coefficients that characterize the perfect fluid.

FIG. 1. A schematic phase diagram of
QCD, including a still hypothetical critical
point, and the parameter range covered by
the current beam energy scan at RHIC [5].

Furthermore, the Beam Energy Scan (BES)
[5, 6], recently performed at RHIC, and, we
hope, to be continued in upcoming years, will
provide much information about fluctuations
in net proton and net electric charge num-
bers. This information will allow us to explore
the phase diagram at nonzero baryon chemi-
cal potential; detector upgrades of STAR and
PHENIX will lead to new high precision data
on properties of strong interaction matter close
to the QCD transition.

Providing theoretical input from nonperturba-
tive lattice QCD calculations at vanishing as
well as nonvanishing values of the quark chem-
ical potentials, extrapolated to the continuum
limit and performed with physical values of the
quark masses, thus remains of great impor-
tance. In order to confront experimental re-
sults on higher order cumulants of charge fluc-
tuations with QCD calculations that go beyond

1



the predictions of model calculations, e.g., the hadron resonance gas model, accurate nu-
merical results are needed.

Aside from these experiment-driven motivations for future numerical calculations in QCD
thermodynamics, there also exist fundamental theoretical questions related to the phase
structure of quantum chromodynamics at nonzero temperature and/or nonzero density that
should be addressed, as QCD is the only component of the Standard Model that stands on
its own as a well-defined quantum field theory. The spontaneously broken chiral symmetry
of QCD, the axial anomaly and the topological structure of the QCD vacuum have played an
important role in the development of our theoretical picture of the QCD phase diagram and
the mechanisms leading to phase transitions in a quantum field theory. With the increase in
computing resources, we have now reached a point at which numerical simulations not only
with physical values of quark masses but even with mass parameters smaller than physical
have become possible. This will allow us to come close to the chiral limit of QCD and directly
probe the universal properties of QCD thermodynamics, including the existence of genuine
phase transitions at vanishing quark mass values and vanishing as well as nonvanishing
baryon chemical potential.

These are pressing physics questions that need and can be answered during this decade.
They can be answered with the anticipated development of computer hardware achieving
exascale levels of performance together with the development of new algorithms and software
that exploit exascale hardware for QCD calculations. The decadal research program in QCD
thermodynamics has, to a large extent, been described in a Scientific Grand Challenge report
issued by the U.S. Department of Energy in 2009 [1]. We will discuss here how we proceeded
in recent years and will outline the next steps that need to be taken to reach our goal of
understanding the phases of strongly interacting matter and the role they play in the cosmos
(NSAC 2007).

II. CURRENT RESULTS AND FUTURE CHALLENGES IN QCD

THERMODYNAMICS

A. The QCD transition and the equation of state

The QCD transition temperature and the equation of state are among the most basic quan-
tities of QCD thermodynamics that are of obvious importance for the description of the
hydrodynamic expansion of hot and dense matter created in heavy ion experiments as well
as the early universe. The transition in finite temperature QCD has aspects related to de-
confinement and chiral symmetry restoration. For the value of the light (u and d) quark
and strange quark masses realized in nature only the chiral aspects of the transition allow
for a definition of the transition temperature. In a strict sense, the true chiral phase tran-
sition occurs only at vanishing values of the light quark masses, where we expect universal
critical scaling. Using the theory of critical universality, we can then relate this transition
to the crossover observed at physical quark masses, resulting in a reasonably well-defined
pseudocritical transition temperature and various crossover phenomena associated with the
nearby chiral transition.
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The properties of the chiral transition as a function of the light quark masses have been
studied using improved staggered fermion formulations. It was shown that, for masses
and temperatures close to the zero-mass chiral phase transition, the behavior of key chiral
observables is governed by the O(4) universality class in three dimensions [7] (see also section
II.D).

An analysis of the pseudo-critical temperature at the crossover transition, extrapolated to
the continuum limit gave the value Tc = 154(9) MeV [8]. This value is in good agreement
with the value for the crossover transition temperature obtained by using another staggered
fermion discretization scheme, the so-called stout staggered action [9].

LGT: Tc(µB)

Cleymans: PRC 73, 034905 (2006)

Andronic: PLB 673, 142 (2009)

STAR: PRC 79, 034909 (2009)

Becattini: PRC 85, 044921 (2012)
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FIG. 2. The QCD transition compared
with freeze-out temperatures determined in
heavy ion collisions at RHIC and the SPS.
The broad band shows the transition tem-
perature Tc(µB) = Tc(0) + κB(µB/T )2 with
Tc(0) = 154(9) MeV [8] and κB = 0.0066(7)
[11] obtained in lattice QCD calculations.

The above value of Tc is close to experimentally
determined freeze-out temperatures in high en-
ergy runs at RHIC [10]. First studies of the
dependence of the transition temperature on
a nonzero baryon chemical potential (µB) [11]
are also in good agreement with experimental
findings, that are based on a comparison of ex-
perimental data for particle yields with hadron
resonance gas model calculations. This seems
to suggest that in a wide range of baryon chem-
ical potentials, µB <∼ 200 MeV, which corre-
sponds to beam energies at RHIC of

√
sNN >∼

20 GeV, calculations of the transition tempera-
ture based on next-to-leading order Taylor ex-
pansions of thermodynamic observables can be
controlled and can be related to experimental
findings at the time of freeze-out. There is,
however, the tendency that the crossover tem-
perature for the QCD transition and the exper-

imentally determined freeze-out temperatures start to deviate at larger values of the baryon
chemical potential. In order to address this issue in lattice QCD calculations based on a
systematic expansion in baryon chemical potentials, one has to calculate higher order ex-
pansion coefficients in Taylor series of, e.g., the chiral condensate and its susceptibility (see
also section II.B). Some results for the QCD transition temperature and a comparison with
freeze-out parameters are shown in Fig. 2.

At present simulations with improved staggered fermion actions are most advanced in de-
termining the QCD transition temperature for light, almost physical values of the quark
masses. However, also simulations with chiral fermions, e.g., domain wall fermions, are now
reaching a point where calculations with physical values of the quark masses are becoming
feasible. Simulations with pion masses of about 200 MeV have been performed [12, 13],
and it has been demonstrated that the calculation of charge fluctuations is also possible in
this context [12], which should make it feasible to calculate the transition temperature as
a function of the baryon chemical potential, i.e., the determination of the curvature of the
transition line in the QCD phase diagram, also in a chiral fermion formulation.

Calculations of the equation of state (EoS) [14, 15], including its extension to nonzero
baryon number density [16] have been improved considerably over the past few years. These
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FIG. 3. Left: The ratio of the entropy density to its ideal gas value, calculated with asqtad,

p4 and stout improved staggered fermion action and compared with the resummed perturbative

calculations (dashed lines). We also show this ratio for the strongly coupled N = 4 supersymmetric

plasma obtained by AdS/CFT correspondence as the black line (see text). Right: The trace

anomaly calculated for the HISQ action [17], compared with the stout continuum estimate.

calculations have been performed using improved staggered fermion formulations and now
include a wide range of lattice spacings corresponding to temporal extent Nτ = 4 to 12
(the lattice spacing a is related to Nτ and the temperature T as a = 1/(NτT ) ). The
HotQCD collaboration calculated the EoS using two different discretization schemes, the
so-called asqtad and p4 improved staggered formulations, on lattices with temporal extent
Nτ = 6 and 8. A comparison of these results with a continuum estimate of the entropy
density based on calculations with yet another staggered fermion discretization scheme,
the stout action [14], and lattices with temporal extent Nτ = 6, 8 and 10 is shown in
Fig. 3. All these calculations have in common that the entropy density rises rapidly in a
narrow temperature interval, reflecting the liberation of new degrees of freedom at the QCD
transition temperature. At higher temperatures the entropy density quickly reaches a value
that is close to the entropy density of a noninteracting quark-gluon gas. Current calculations
performed with different discretization schemes, however, also show distinct differences. For
the entropy density, the differences between the continuum extrapolated results obtained
with the stout action and current HotQCD results are understood to be due to so-called
taste symmetry breaking effects, which are known to be large for asqtad and p4 actions at
low temperature. The discrepancies at high temperature, on the other hand, are at present
not well understood. In this temperature range effects of taste symmetry breaking should
not be important. On the other hand, at sufficiently high temperatures the stout action
has the same large cutoff effects as unimproved staggered fermions, while the leading order
cutoff effects are eliminated in the asqtad and p4 discretization schemes.

At present the highly improved staggered quark (HISQ) discretization scheme, used by the
HotQCD collaboration in their calculations of the QCD equation of state, seems to be best
suited for reducing lattice discretization errors at all temperatures. It is designed to re-
duce drastically taste violation effects at low temperature (more efficiently than in the stout
scheme) and has the same small discretization errors at high temperature as the asqtad
action. The HISQ action currently is used by the HotQCD collaboration to refine existing
calculations of the equation of state. The basic observable here is the trace anomaly, i.e., the
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difference between energy density and three times the pressure, ε − 3p, which is calculated
on lattices with temporal extent varying from Nτ = 4 to Nτ = 12. The lattice cutoff thus
varies by a factor three, which will allow a systematic analysis of the extrapolation to the
continuum limit. Some results from this ongoing study are shown in the right hand part of
Fig. 3 and are compared with a continuum estimate based on calculations with the stout
action. While results obtained with the HISQ and stout discretization schemes agree well
at low temperature, confirming that both schemes control taste violation effects well, differ-
ences similar to those seen in calculations with the asqtad and p4 actions persist at higher
temperatures. At temperatures T > 300MeV the HISQ results agree well with previous
HotQCD results obtained with p4 and asqtad action. Furthermore, the HISQ and asqtad
Nτ = 12 data agree within errors. In the temperature region 190 MeV < T < 350 MeV the
stout data for ε− 3p are, however, significantly below the HISQ data. Differences between
the stout and HISQ calculations show up most prominently in the vicinity of the maximum
of (ε− 3p)/T 4, which occurs well into the high temperature phase at about 1.2Tc. In order
to perform a controlled continuum extrapolation in this temperature range, obviously one
needs to reduce statistical errors in order to isolate clearly those effects coming from a sys-
tematic cutoff dependence of the data. It is expected that this can soon be accomplished also
within the HISQ discretization scheme by making use of the new generation of Petaflop/s
computing resources at Leadership Class computing facilities. Clearly, achieving agreement
on continuum extrapolated results for the QCD equation of state must have high priority.

In Fig. 3 we also compare lattice QCD results for the entropy density with resummed pertur-
bative calculations. The results obtained with the p4 and asqtad action agree well with the
resummed perturbative result while the stout continuum estimate is below it. The fact that
the entropy density is close to the ideal gas value and is well described by resummed per-
turbative calculations is often interpreted as an indication of the weakly interacting nature
of the quark-gluon plasma (QGP). On the other hand in a strongly coupled N = 4 super-
symmetric gluon plasma the entropy density calculated using AdS/CFT correspondence also
deviates from the ideal gas limit by only 25%. It is interesting that in the temperature range
relevant for the discussion of heavy ion experiments at RHIC and LHC, the stout results are
close to strong coupling results predicted by AdS/CFT. This, of course, will change at higher
temperatures. Nonetheless, this makes it clear that precise lattice results for the equation
of state are needed to distinguish between the strongly and weakly interacting nature of a
QGP. As the entropy density, as well as pressure and energy density, are deduced from the
trace anomaly, making use of standard thermodynamic relations, it is mandatory to arrive
at firm results for the latter. This will also provide other bulk thermodynamic observables,
such as the velocity of sound, that are of relevance for the hydrodynamic modeling of the
expansion of dense matter created in heavy ion collisions.

The advances made in studies of bulk QCD thermodynamics, however, do not complete the
analysis of the QCD transition temperature and the equation of state. At present, essentially
all continuum extrapolated results for the QCD transition and bulk thermodynamics have
been obtained using a particular discretization scheme – the staggered fermion formalism.
In general it is desirable to cross-check these results within another fermion discretization
scheme. Domain Wall fermions (DWF) are particular attractive in this respect as the DWF
scheme maintains exact chiral symmetry even at finite values of the cutoff, which may be
of importance for the analysis of the QCD transition (see also section II.D). Moreover, even
in the context of staggered fermions, extending the current results for the QCD equation of
state to nonvanishing chemical potentials, (i.e., nonvanishing strangeness chemical potential
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as well as nonvanishing baryon chemical potential), is of great importance for a better
understanding of the QCD phase diagram and the comparison with experimental findings
at lower beam energies. Future calculations with nonzero chemical potentials, described in
the next section, will also provide the necessary input for a calculation of the equation of
state up to O(µ6

B) in the baryon chemical potential on lattices with temporal extent up to
Nτ = 12. This will greatly advance our current knowledge, which at present is limited to
coarse lattices [16, 18] or leading order corrections only [19]. Furthermore, the inclusion of
a physical charm quark mass [20] will be of importance for the physics of the early universe.
We will also need to further analyze the influence of large electric and magnetic fields on
bulk thermodynamics and the transition temperature, [21] which has implications for phase
transitions in the early universe as well as heavy ion collisions [22].

B. The critical endpoint

Whether or not a true second order phase transition point, the critical endpoint [23], exists
in the QCD phase diagram at nonzero values of the baryon chemical potential is one of the
most exciting questions in current studies of QCD thermodynamics. At RHIC the beam
energy scan (BES) program is devoted to this question. Much of this experimental program
is motivated by lattice QCD studies that showed the sensitivity of fluctuations of conserved
charges and their higher order cumulants to changes in temperature and baryon chemical
potential [24, 25]. In particular, ratios of higher order cumulants of conserved charge fluctu-
ations are interesting as they directly reflect the most relevant degrees of freedom that are
carriers of these charges in different temperature regimes [26] and, moreover, are also acces-
sible in heavy ion experiments [27]. The BES at RHIC produced first results on fluctuations
of net proton numbers and net electric charge [28–30] that now can be compared with lattice
QCD calculations [31, 32]. In Fig. 1 we show a schematic plot of the QCD phase diagram
including a critical point and the parameter range of the experimental program at RHIC
that is currently pursued in search for hints for the existence and location of the critical
point.

Lattice QCD calculations at nonzero values of the chemical potentials are difficult, since at
nonzero net baryon number density the fermion determinant becomes complex, resulting in
the so-called fermion sign problem. Our standard Monte-Carlo simulation techniques rely
on the existence of a positive integration kernel that can be interpreted as a probability
density. But those techniques can not be applied. Various approaches have been exploited
to avoid the limitations in finite density lattice QCD calculations that are caused by the sign
problem, at least partially. For small values of the chemical potential, the regime of small
chemical potential can be reached with a systematic Taylor series expansion. The expansion
coefficients are generalized susceptibilities constructed from moments of net baryon number,
electric charge and strangeness fluctuations. The expansion coefficients in the Taylor series
are evaluated at vanishing values of the chemical potential, but can eventually be used to
estimate the radius of convergence of the Taylor series. This method provides an estimate for
the location of a possible critical point, which can be systematically improved when higher
order expansion coefficients become accessible. At present such estimates [33] are at best
indicative; they are based on calculations performed on coarse lattices with unimproved
staggered fermion actions and unphysical values of the light quark masses. Continuum
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extrapolated results at (almost) physical values of the light quark masses and a physical
value of the strange quark mass at present exist only for quadratic fluctuations of conserved
charges [34, 35]. Some preliminary results for fourth order cumulants of charge fluctuations
have been presented only recently [32, 36]. We show some results for quadratic and quartic
fluctuations of net baryon number and electric charge in Fig. 4.

A second generation of lattice QCD calculations of higher order cumulants of baryon number
and electric charge fluctuations is currently underway. Although these new calculations use
the staggered fermion discretization schemes with strongly reduced cutoff effects, i.e., the
HISQ action, these calculations are far from final. Calculations closer to the continuum limit
and with physical values of the quark masses are still needed. Furthermore, in order to make
direct comparisons between lattice QCD calculations and experimental measurements we
also need to take into account nonzero values of the strangeness and electric charge chemical
potentials [31]. This will allow us to adjust the theoretical calculations to conditions met in
heavy ion collision experiments, namely strangeness neutrality and the isospin asymmetry of
the colliding nuclei. In particular, the analysis of electric charge fluctuations, which at low
temperature as well as in the transition region receive large contributions from light pions,
requires calculations on large lattices, close to the continuum limit, in order to suppress
the influence of cutoff effects that result from taste symmetry violations in the staggered
discretization scheme.

Taylor expansions can also be used to calculate charge fluctuations at nonzero values of
the chemical potential. Complete next-to-leading order calculations of up to fourth order
cumulants of conserved charge fluctuations (i.e., mean, variance, skewness and kurtosis),
that are currently being measured in the BES at RHIC, require knowledge of up to sixth
order susceptibilities. This is sufficient to control properties of cumulants in the range
of baryon chemical potentials µB <∼ 200 MeV [31]. It allows us to compare with the
experimental results for beam energies

√
sNN >∼ 20 GeV. A calculation of eighth order

susceptibilities will be necessary to confirm the robustness of next-to-leading order results
and to extend the range of validity of lattice QCD calculations to larger values of µB/T ,
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corresponding to the smaller beam energies that are already accessible to the BES at RHIC
and that will be studied in even more detail at future heavy ion facilities. Gaining control
over eighth order susceptibilities will also help in estimating the radius of convergence related
to the location of the critical point.

Calculations of higher order cumulants of net charge fluctuations typically require generation
of O(105) gauge-field configurations. On a sub-sample of O(104) configurations, higher order
susceptibilities are calculated through multiple inversions of the fermion Dirac matrix using
O(103) random source vectors. The calculation of higher order cumulants at a single value
of the temperature thus typically involves several million matrix inversions. The number of
random vectors plus gauge-field configurations needed to reach comparable statistical errors
in different nth order cumulants grows exponentially. Current calculations with the HISQ
action suggest that it grows like 10n/2. Moreover, the computational effort per set of random
vectors increases approximately as 1.5n. The overall computational effort for going from
a sixth order calculation to eighth order, keeping relative errors constant, thus increases
roughly by two orders of magnitude. This shows that in addition to the likely hardware
improvements, resulting in an order of magnitude increase in computational capabilities
over the next five years, substantial algorithmic improvement is also required.

While it is of interest to explore the generic structure of higher order cumulants in a large
temperature range, making contact with perturbation theory at high temperature [37–39]
and the HRG model calculations at low temperatures [26], it clearly is most relevant to obtain
high quality results in a rather narrow temperature range in which freeze-out is expected
to occur in the ongoing heavy ion collision experiments, 150 MeV <∼ T <∼ 170 MeV. In
this temperature range calculations of cumulants up to eighth order should be performed
in the future. This will require algorithmic improvements as well as increases in hardware
resources. Before going to eighth order the current program on the calculation of sixth
order coefficients needs to be completed. Continuum extrapolated results, using three lattice
spacings corresponding to temporal extents Nτ = 8, 12 and 16, for susceptibilities should be
obtained for at least five temperature values within this relevant temperature range using the
HISQ action at physical values of the light and the strange quark masses. Such calculations
will need substantial computing resources for the generation of gauge-field configurations as
well as the calculation of Taylor expansion coefficients. In particular the latter is nowadays
done very efficiently on general purpose graphics processing units (GPUs). State-of-the-art
calculations of higher order cumulants continuously make use of O(500) GPUs. In order
to advance to the calculation of eighth order cumulants one will need to exploit computing
platforms with several thousand GPUs.

C. The properties of the quark-gluon plasma

Experiments at the Relativistic Heavy Ion Collider, Brookhaven National Laboratory, have
revealed that even at temperatures moderately above the QCD transition temperature,
the quark-gluon plasma exhibits far more complex properties than that expected for a
weakly interacting thermal medium described by perturbative QCD [2, 3]. In particular,
the QGP possesses remnant confining features, i.e., some hadronic bound states involving
heavy quarks continue to exist in this regime. Furthermore, these highly non-perturbative
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properties of the QGP also results in intriguing transport properties leading to many unex-
pected experimental observations: the smallness of the ratio of shear viscosity and entropy
leads to (almost) perfect fluidity of the QGP. Understanding the properties of this genuinely
nonperturbative regime in the high temperature phase of QCD is a theoretical challenge
that requires a genuine nonperturbative approach, namely realistic lattice QCD calculations
performed close to the continuum limit using physical values of the dynamical quark masses.

Due to the smallness of the electromagnetic coupling and the limited volume of the hot
medium generated in a heavy ion collision, dileptons and photons escape the medium with-
out any subsequent interaction. They thus carry information not only about the tempera-
ture close to the hadronization transition but also about the early stages of the evolution.
Studies of electromagnetic probes, such as the dilepton and photon emission rates, have pro-
duced many fascinating experimental results concerning the properties of the quark-gluon
plasma close to the QCD transition. Particularly, the PHENIX collaboration has recently
observed a large enhancement of low mass dilepton emission [40] over conventional hadronic
sources, which, however, does not seem to be present in the data reported by the STAR
collaboration [41]. Furthermore, experimental results also indicate that low energy pho-
tons may be emitted from a thermal medium having temperatures moderately above the
QCD transition temperature [40, 42], and these photons also exhibit large collective flow
[42, 43]. Theoretical studies indicate [44] that an explanation for these experimental results
may lie in the enhancement of photon emission rates for temperatures just above the QCD
transition temperature, calling for first-principle-based nonperturbative calculations of the
photon/dileptons emissivity in the vicinity of the transition region.

Heavy quarks, such as charm and bottom, are another unique set of probes for properties of
the quark-gluon plasma. Owing to their large masses, they cannot be produced thermally
inside the QGP: they are produced at the primordial stages having an initial energy spectrum
far from the thermal spectrum. Experimental observations show surprisingly large collective
flow and energy loss of the charm quarks [45, 46], indicating rapid thermalization of charm
quarks inside the QGP. Theoretical studies [47, 48] suggest that such a large collective flow
and energy loss of charm quarks can be understood if the charm quark diffusion constant
is almost an order of magnitude smaller than the perturbative estimates [49]. Thus, these
puzzling experimental facts can only be explained by performing nonperturbative, first-
principle QCD calculations of the charm diffusion constant in the QGP.

Lattice calculations of heavy quark bound states have advanced considerably in recent years.
Finite temperature calculations in quenched QCD are now possible on very large lattices.
The largest lattices exploited reach sizes of 1283 × 96 [50], which is comparable to lattice
sizes used today in zero temperature hadron spectroscopy, and have discretization constants
(lattice spacings) as small as 0.01 fm. Such large lattices with a high resolution allow us
to study the thermal heavy quark correlation function and provide enough information on
the Euclidean time dependence of these correlators to perform a statistical analysis based
on the maximum entropy method (MEM) [51]. The MEM analysis provides information on
spectral functions as well as transport coefficients. Some recent results for the J/ψ spectral
function are shown in Fig. 5 (left). They lead to the conclusion that all charmonium states
have melted at 1.5Tc. First attempts to generalize these calculations to properties of bound
states at nonzero momenta [52] are underway, and also first attempts to study heavy quark
bound states, including the bottomonium system, in QCD with a dynamical light quark
sector have been started [53]. The latter, however, are at present limited to studies on rather
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small lattices. In order to have sufficient information on the Euclidean time dependence of
the correlation functions such calculations are performed on highly anisotropic lattices.

Thermal gauge-field configurations on lattices with large temporal extent also permit an
analysis of spectral functions in the light quark sector. Aside from showing explicitly that
light quark bound states in different quantum number channels melt in the high temperature
phase, the vector spectral function is of particular interest. It provides direct information
about the production rate for dilepton pairs arising from quark anti-quark annihilation in a
hot thermal medium. We show results from a recent calculation on quenched QCD lattices
of sizes up to 1283 × 48 [54] in Fig. 5(right). At a temperature T ' 1.5Tc these continuum
extrapolated results are in good agreement with resummed (hard thermal loop) perturbation
theory. An extension of these calculations to nonzero momentum is underway and will also
give access to thermal photon rates. Of course, in the light quark sector it will be even more
important than for heavy quarks to include contributions from dynamical light quarks in
these calculations.

A problem closely related to the analysis of light and heavy quark bound state properties is
the calculation of light and heavy quark transport properties, e.g., the electrical conductivity
and the heavy quark diffusion constant. This requires gaining control over the low frequency
region of spectral functions, which is even more sensitive to the large distance behavior of
spectral functions and thus requires large lattices and good control over statistical errors.
Usually, one needs an ansatz for the functional form of the spectral function in this regime
(ρ(ω) ∼ ω) to extract transport coefficients. First results on the electrical conductivity [54]
and the heavy quark diffusion constant [50] heavy been obtained in connection with the
recent studies of light and heavy quark correlation functions on large quenched lattices.

Lattice QCD studies of thermal hadron spectra, transport coefficients, such as the electrical
conductivity and charm diffusion constants as well as the dilepton/photon emissivity all
require knowledge of the spectral functions obtained from the analysis of various imaginary
time correlation functions [55]. Although this is an ill-posed problem, statistical techniques
based on the maximum entropy method have been applied quite successfully to such prob-
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lems in the context of finite temperature QCD [50, 51]. In order to do so one, however,
requires numerical results on rather large lattices with little statistical noise. For this rea-
son most results on thermal masses and transport coefficients have so far been obtained in
quenched QCD. Extending these calculations to QCD with dynamical light quark degrees
of freedom on similar size lattices will be an important task during the next years.

The largest influence of dynamical quark degrees of freedom will become visible in the
transition region. A calculation of spectral functions thus can focus on the temperature
range T/Tc ' (1− 1.5). For three to four temperature values one should analyze correlation
functions at two values of the cutoff that correspond to lattices with temporal extent Nτ = 32
and 48, respectively. A third data set for Nτ = 16 will be available from the finite density
QCD calculations discussed in section II.B. Eventually one wants to extend such an analysis
to even larger temporal lattices, Nτ ' 64.

The transport properties related to light and heavy quark diffusion that we discussed so far
are quite distinct from the shear and bulk viscosities that enter viscous hydrodynamics and
play a central role in the interpretation of flow properties of hadrons observed in heavy ion
collisions. The calculation of shear and bulk viscosities on the lattice [55–57] requires the
analysis of observables involving the gluonic energy-momentum tensor. Unlike the hadronic
correlation functions discussed so far, the gluonic correlators are much more noisy and
require much higher statistics. While in the former case large computing resources are
required to invert fermion matrices on a large set of gauge-field configurations, in the latter
case these resources are needed to generate an even larger set of gauge-field configurations.
The calculation of gluonic correlation functions itself, however, is simple and their analysis
makes use of the same statistical tools (MEM) also applied to the analysis of hadronic
correlation functions. To make progress with calculations of shear and bulk viscosities one
thus will perform calculations at one or two temperature values at which the number of
gauge-field configurations needs to be increased by an order of magnitude.

D. The chiral limit

Many fundamental features of the QCD phase diagram can be understood in terms of global
symmetries of the QCD Lagrangian that are either anomalously (axial symmetry) or spon-
taneously (chiral symmetry) broken. First principle nonperturbative studies of the funda-
mental symmetries of QCD not only enhance our qualitative and quantitative knowledge of
the phase structure of QCD, but also improve our understanding of the mechanisms that
lead to phase transitions in quantum field theories in general.

The spontaneous breaking of the global chiral symmetry induces a singular term in the QCD
partition function that increasingly dominates the thermodynamic observables at smaller
values of the quark masses. In order to quantify the influence of the chiral symmetry at
the physical values of the quark masses, one needs to extend calculations to lower quark
masses closer to the singular point. During recent years calculations at and below the phys-
ical quark mass values have become possible with improved staggered fermion actions. For
the first time this has allowed a convincing demonstration of the existence of an underlying
universal structure in thermodynamic functions that is consistent with the scaling prop-
erties expected for a phase transition in the three-dimensional O(4) universality class [7].
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The exploitation of these universal features permits a well defined characterization of the
crossover transition at nonvanishing light quark masses. It leads to a determination of the

FIG. 6. Scaling behavior of the normal-
ized chiral condensate, M = ms〈ψ̄ψ〉/T 4,
for different values of the light-to-strange
quark mass ratio ml/ms on coarse lattices
with temporal extent Nτ = 4 [7].

dependence of the QCD transition tempera-
ture at vanishing values of the chemical po-
tential [8]. In Fig. 6 we show results from a
scaling analysis of the chiral condensate per-
formed with staggered fermions on a still rather
coarse lattice [7]. Understanding the universal
features of the QCD phase transition in the
chiral limit and its influence in the physical
world is also of importance for the discussion
of higher order susceptibilities that have been
discussed in the previous section. In fact, it
has been shown that the fourth and the sixth
order susceptibilities of net charge fluctuations
reflect the underlying features of the universal
properties of the QCD chiral transition through
the development, respectively, of a pronounced
peak and a change of sign [58] in the vicinity

of the QCD transition, leading to possible experimentally observable consequences for net
charge fluctuations measured in the BES at RHIC. Although the results obtained with im-
proved staggered fermion actions are quite promising, so far studies of universal properties
that require calculations with less-than-physical quark masses have been restricted to coarse
lattices due to large computational costs. These calculations need to be validated through
the use of the highly improved staggered quark action and supplemented by studies closer to
the continuum limit. Similar to the calculations discussed in section II.B. these calculations
will rely on the generation of gauge-field configurations on Blue Gene/Q type machines and
extensive use of GPUs for data analysis. For the scaling analysis one will consider chiral
susceptibilities and baryon number susceptibilities up to sixth order, as these are the first to
diverge in the chiral limit. These data will also allow us to calculate the O(µ4

B) corrections to
the chiral phase transition line as a function of the baryon chemical potential as well as the
strangeness chemical potential. They will provide solid estimates of the systematic errors
induced by truncating a Taylor series expansion and will improve the reliability of estimates
for the range of validity of the truncated series for the phase transition temperature. As such
we will be able to strengthen the comparison between freeze-out temperatures measured in
heavy ion experiments and the transition temperature calculated in QCD.

So far we have discussed universality in the restoration of SU(2)× SU(2) chiral symmetry.
The U(1) axial symmetry of the QCD Lagrangian, on the other hand, is anomalously broken.
Therefore, it does not generate a singular term in the QCD partition function even in the
limit of vanishing quark masses. However, as noted already in the seminal work on the phase
structure of QCD in the chiral limit [59], qualitative changes in the QCD phase structure
can occur if the anomalous breaking of the axial symmetry breaking becomes sufficiently
weak. For instance, it has been argued that the QCD transition may become first order
if the amount of axial symmetry breaking becomes small enough through the suppression
of topological charges due to the color screening induced at high temperatures [59]. The
axial anomaly also plays a crucial in role in defining the qualitative aspects of the phase
structure of dense QCD, specially on the existence/location of the QCD chiral critical point
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FIG. 7. The transformation properties of various scalar and pseudo-scalar hadrons under chiral

rotations and the manifestation of these symmetry transformations in corresponding susceptibili-

ties.

[60]. The breaking at low temperatures and the restoration of some of the chiral symmetries
at high temperatures has an impact on the hadron spectrum in QCD in the scalar as well as
vector channels and can be probed in lattice QCD calculations either by calculating directly
thermal hadron masses or the corresponding susceptibilities that are obtained by integrating
correlation functions with specific hadronic quantum numbers over space-time [61]. This is
illustrated schematically in Fig. 7.

Beside the phenomenological consequences that result from the temperature dependence
of the axial symmetry breaking there remain many unanswered deep theoretical questions
regarding the axial anomaly in QCD under extreme conditions; particularly the mechanism
of axial anomaly breaking after the chiral symmetry restoration and its manifestation in
the Dirac eigenvalue spectrum. To address these intriguing phenomenological as well as
theoretical issues via nonperturbative lattice QCD, it is obviously preferable to utilize a
discretization scheme that preserves exact chiral symmetry and reproduces the correct ax-
ial anomaly even at nonvanishing values of the lattice spacing. The domain wall fermion
(DWF) formulation is such a discretization scheme ideally suited for lattice QCD studies re-
lated to the chiral and anomalous properties of QCD. Although in the past one had to refrain
from using DWF due to its prohibitive computational costs, over the past few years owing
to tremendous algorithmic advancements coupled with the advent of increasing computing
power, it is becoming increasingly possible to perform realistic lattice QCD simulations uti-
lizing the DWF formalism. First results on the QCD transition [12] and studies related to
the mechanism of the axial symmetry breaking at finite temperature [62] are indeed encour-
aging. These exploratory studies indicate that the relation between low-lying eigenvalues
of the Dirac operator, enforced by the exact chiral symmetry of DWF, and the topological
structure of gauge-field configurations becomes evident. In the future these DWF studies
need to be extended toward the chiral limit by utilizing smaller quark masses for detailed ex-
plorations of the chiral symmetry and the axial anomaly in QCD. In such studies a detailed
comparison between the distribution of low-lying eigenvalues of the Dirac operator and the
topological structure of gauge-field configurations will be performed. Results can also be
compared with the temperature dependence of various susceptibilities that are sensitive to
the restoration or breaking of chiral symmetries.

The focus of calculations with DWF will be on exploring the consequences of exact chi-
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ral symmetries at finite values of the lattice cutoff rather than trying to perform also the
continuum limit. Most calculations thus can be performed on five dimensional lattices with
temporal extent Nτ = 8. Also, in these calculations it will be important to use smaller-than-
physical quark mass values in order to control the approach to the chiral limit. In order to
calculate the QCD transition temperature within the DWF formalism, additional calcula-
tions on lattices with large temporal extent will be necessary. Such calculations obviously
are in need of large computational resources on leadership class computers.

III. OUTLOOK

A. Scientific challenges

Calculations up to the present have yielded reliable results for the QCD transition tempera-
ture at vanishing baryon chemical potential. We have some understanding of the dependence
of the transition temperature on small values of the baryon chemical potential and made sig-
nificant progress in calculating the QCD equation of state and related bulk thermodynamic
properties.

Completing these calculations at physical values of the quark masses, and establishing the
properties of strong interaction matter at vanishing net baryon number density in the chi-
ral limit, making use also of calculations performed with chiral fermions (Domain Wall
Fermions) will define the anchor point for all studies of the QCD phase diagram as a func-
tion of temperature and net baryon number density. It will put an indisputable lower bound
on the temperature at which hadron matter transforms into a QGP and will establish a
reliable starting point for extensions of these calculations into the regime of nonvanishing
baryon number density. In combination with calculations using values of light and heavy
quark masses as realized in nature, this will quantify the role of chiral symmetry breaking
and confinement in the thermodynamics of strong interaction matter. The equation of state
will be the basic equilibrium input to a microscopic description of the rapidly expanding and
cooling dense matter formed in a heavy ion collision [1].

Calculations at nonzero baryon chemical potential have already had a strong influence on
the experimental beam energy scan program pursued at RHIC to search for evidence of the
postulated critical endpoint in the QCD phase diagram. Refining the existing calculations
of quadratic and quartic cumulants of net baryon number, electric charge and strangeness
cumulants and extending these calculations to even higher orders will help provide estimates
for the location of a critical point or extend to larger values the excluded range of baryon
chemical potentials, which today reaches up to µB ' 200 MeV.

Calculations of spectral functions and the application of the maximum entropy method
used to extract information on the fate of light and heavy quark bound states in the quark-
gluon plasma as well as transport coefficients are highly advanced in pure gauge theory
calculations. Including the influence of dynamical light quark degrees of freedom will be a
major challenge during the next years.
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Calculations of transport coefficients will provide fundamental insight into the structure of
hot and dense matter. It will allow us to quantify aspects of the extent to which the phe-
nomenologically successful modeling of heavy ion collisions has a solid foundation in QCD;
i.e., whether a near-equilibrium QGP described by QCD indeed equilibrates rapidly and can
be characterized as an almost-perfect fluid. Detailed information on the spectral function
would confirm whether or not the QGP is strongly coupled at RHIC, and by varying the
temperature in the lattice QCD calculations, scientists will learn how much the temperature
has to be increased before the plasma becomes weakly coupled. This question will be of central
importance in comparing the heavy-ion data obtained at the RHIC and the LHC experiments
because the temperature in the latter will be about a factor 1.5 to 2 higher [1].

B. Computational challenges

All of the ongoing and future research projects outlined in the previous sections are in need of
large computational resources. At present, members of USQCD are making use of dedicated
hardware funded by the DOE through the LQCD-ext Computing Project, as well as a Cray
XE/XK computer, and IBM Blue Gene/Q and Blue Gene/P computers, made available
by the DOE’s INCITE Program. During 2013, USQCD, as a whole, expects to sustain
approximately 300 Tflop/s on these machines. Subgroups within USQCD also make use of
computing facilities at the DOE’s National Energy Research Scientific Computing Center
(NERSC), the Lawrence Livermore National Laboratory (LLNL), and centers supported
by the NSF’s XSEDE Program. The BNL group furthermore has access to substantial
additional computing capability on the Blue Gene/Q at BNL, the Blue Gene/Q prototypes
of the RIKEN-BNL research center as well as through international collaborations. The
Bielefeld-BNL Collaboration has grants at the European PRACE centers and utilizes a 400
GPU-cluster in Bielefeld.

For some time, the resources we have obtained have grown with a doubling time of approx-
imately 1.5 years, consistent with Moore’s law, and this growth rate will need to continue
if we are to meet our scientific objectives. The software developed by USQCD under our
Nuclear Physics SciDAC grant enables us to use a wide variety of architectures with very
high efficiency, and it is critical that our software efforts continue at their current pace. Over
time, the development of new algorithms has had at least as important an impact on our
field as advances in hardware, and we expect this trend to continue, although the rate of
algorithmic advances is not as smooth or easy to predict as that of hardware.

Almost all of the calculations outlined in the previous section require still more numerous
or larger computational resources and further code development to exploit them. As the
chiral critical point is approached, the computational expense grows rapidly both because
the fermion matrices in the calculation become more ill-conditioned and because the physical
size of the lattice must be increased to avoid distortions from finite volume effects. Multi-
GPU architectures and resources with many thousands of GPUs or new multi-core CPU
architectures are needed to carry out such calculations. Typically the time requirement
for such calculations is dominated by the analysis part as many thousand matrix inversions
with different source vectors on the same gauge-field configurations are needed. The number
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of floating point operations, expressed in terms of Teraflop/s-years, needed to analyze the
approach to the chiral limit with pion masses about half of their physical value are estimated
in Table I.

T -values ms/ml lattice size configuration generation configuration analysis

[TFlop/s-years] [TFlop/s-years]

5 40 323 × 6 20 70

5 60 403 × 6 49 205

5 80 483 × 6 112 480

TABLE I. Requirements for the generation of 105 gauge-field configurations used for a scaling

analysis at less-than-physical values of the quark masses at five values of the temperature close to

the transition temperature in the chiral limit, i.e., temperatures between 140-160 MeV. Also given

is the number of floating point operations needed to calculate up to sixth order cumulants on a

sample of 104 configurations. Repeating these calculations at smaller lattice spacings (Nτ = 8) to

control cutoff effects in the continuum limit would require a factor five larger computing resources.

Based on today’s state-of-the-art software and hardware at leadership class facilities, this project

would require access to 1.5 Blue Gene/Q racks and 5000 GPUs for one year to be completed.

The calculation of higher order cumulants is a huge “capacity” problem. Many thousands of
GPUs are needed to accomplish the work, although each calculation may require only a small
number of them. Algorithmic development is also needed. Since such calculations require
repeatedly solving the Dirac equation on the same gauge-field configuration with many
thousands of different sources, deflation algorithms based on removing low-lying eigenmodes
should help reduce the computational cost considerably [63]. In Table II we summarize
the number of floating point operations needed to analyze up to eighth order cumulants
of conserved charges and to perform the continuum limit in a narrow temperature interval
relevant for the comparison with heavy ion experiments.

T -values lattice size configuration generation configuration analysis

[TFlop/s-years] [TFlop/s-years]

5 323 × 8 21 630

5 483 × 12 49 1990

5 643 × 16 144 1010 (sixth order)

TABLE II. Requirements for the generation of 105 gauge-field configurations used for the calculation

of conserved charge fluctuations up to eighth order with physical values of the quark masses at

five values of the temperature between 150-170 MeV and for three values of the lattice spacings.

Also given are the resources needed to calculate up to eighth order cumulants on a sample of 104

configurations using 2 · 103 random source vectors for the inversions of fermion matrices. Limiting

the analysis on the Nτ = 12 lattices to sixth order only would reduce the resource requirement by

a factor 2.

The calculation of thermal masses and transport properties requires lattice with large tem-
poral extent, which, in turn, requires large multi-GPU architectures, such as Titan at Oak
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Ridge National Laboratory or an equivalent cluster based on Intel MIC processors. Of
course, appropriate software for exploiting such heterogeneous computing resources must be
developed. Multigrid [64] and GPU-oriented domain-decomposition algorithms [65] should
help reduce the computational cost. In Table III we summarize the resources needed to
perform calculations of transport coefficients obtained from hadronic correlation functions
on an isotropic lattice of size N3

σ ×Nτ . Requirements for the calculation of shear and bulk
viscosities are not tabulated but will require about an order of magnitude more resources.

T -values lattice size [TFlop/s-years]

3 1283 × 32 60

3 1923 × 48 315

3 2563 × 64 1150

TABLE III. Requirements for the generation and analysis of 104 gauge-field configurations and the

determination of spectral functions of light and heavy thermal correlation functions. The fraction

required for analysis is of the order of 1% only. Using anisotropic lattices with spatial extent of

Nσ = 128 and temporal extents Nτ = 32− 96 for this project can reduce the required resources by

a factor 3.

All calculations described above and the computational needs summarized in the tables can
be performed with the highly improved staggered fermion action. For the study of thermal
masses and transport coefficients one will also perform some of the calculations using Wilson
fermions. As outlined in the USQCD white paper on Lattice QCD for Cold Nuclear Physics
such calculations on lattices sizes listed in Table III are feasible and require about a factor
four more computing resources.

For the analysis of chiral properties of QCD, in particular physics related to the breaking
of the axial anomaly, one also wants to perform calculations with domain wall fermions.
Such calculations also require large multiprocessor leadership-class architectures, such as the
Argonne Blue Gene/Q. Due to the large computational needs for calculations with domain
wall fermions, one would, in the next 5 years, not attempt to analyze charge fluctuations
but would focus on an analysis of chiral susceptibilities and topology. The requirements for
such calculations are summarized in Table IV.

T -values ms/ml lattice size configuration generation

[TFlop/s-years]

5 40 483 × 8 145

5 60 643 × 8 290

5 80 963 × 8 1150

TABLE IV. Requirements for the generation of 104 gauge-field configurations used for a scaling

analysis with domain wall fermions at less-than-physical values of the quark masses at five values of

the temperature close to the transition temperature in the chiral limit, i.e., temperatures between

140-160 MeV. Calculations on lattices of size 323× 8 at the physical quark mass ratio ms/ml ' 27

at a larger set of temperature values are currently being carried out by HotQCD.
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C. Computational priorities

The projects outlined in the previous subsection are in need of substantial computing re-
sources. Not all of them can be started right away. We have indicated how they can be
adjusted to actually available resources by performing them in smaller steps. We prioritize
the computational projects according to the potential payoff for heavy ion and early universe
phenomenology and for our theoretical understanding of field theory in general:

• Equation of state including charm quarks. Calculations already underway are
aimed at resolving disagreements over the equation of state in the absence of charm
quarks. Also calculations are underway treating charm quarks in thermal equilibrium.
Methods for dealing with out-of-equilibrium charm will soon be developed.

• Higher order cumulants of conserved charges. These calculations have direct
bearing on experimental measurements and the search for the critical endpoint. Cal-
culation of lower-order cumulants is currently underway. With the expected increase
in computing power over the next several years, the next order or two can be done.

• Study of the chiral critical point with lighter-than-physical up and down
quarks. This study should use both the highly improved staggered quark formula-
tion and the domain wall fermion formulation. These calculations simply await more
computing power.

• Calculation of transport coefficients and of the viability of charmonium
and bottomonium with quarks included in the statistical ensemble. The
first goal with more computing power will be to confirm the reliability of the methods,
particularly with light quarks included in the statistical ensemble.

IV. SUMMARY OF ACCOMPLISHMENTS AND CHALLENGES

In this section we provide an executive summary of the recent scientific accomplishments
and challenges described in more detail above.

A. Accomplishments

• The QCD transition and equation of state

– Transition temperature at vanishing baryon number density. There
is a reasonably good consensus on the transition temperature (to the extent
a crossover temperature is meaningful). Results compare roughly to the phe-
nomenologically determined freeze-out temperature from experiments with heavy
ion collisions.
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– Transition temperature at nonvanishing baryon number density. The
curvature of the transition temperature as a function of small chemical potential
is known to leading order in the square of the baryon number chemical potential.
Significant differences with freeze-out temperature start to show up at baryon
number chemical potentials larger than µB ' 200 MeV, but more work is needed
to make a reliable comparison.

– The equation of state with up, down, and strange quarks. Our knowledge
of the temperature dependence of the energy density, pressure, and entropy has
vastly improved, but a consensus on the extrapolation to zero lattice spacing is
lacking and needs further work to settle the issues.

– Equation of state including charm quarks. We have early results for the
contribution of charm quarks to the equation of state, but more work is needed
from experiment, phenomenology, and numerical simulation to understand the
role of possibly out-of-equilibrium charm quarks in the thermodynamics of heavy
ion collisions and the importance of the charm contribution in cosmological ap-
plications.

• The critical endpoint

– Computational evidence for the critical endpoint. The evidence is not
solid. We still lack a good computational method for simulating directly at non-
vanishing chemical potential where a critical chiral endpoint is supposed to occur.
Reliable, but indirect methods use a Taylor series expansion at vanishing chemi-
cal potential. The calculational effort grows exponentially with the order of the
expansion. Further terms can help, but require significantly more computation.

– Fluctuations in conserved charges. The coefficients of the Taylor series also
determine fluctuation cumulants in conserved charges. They are measured in
experiment and may give indications of a nearby critical endpoint. Second order
cumulants are reasonably well computed by now. More refined calculation of
higher order cumulants as well as cumulants at nonzero baryon number chemical
potentials is needed for comparison with experimental results.

• The properties of the quark-gluon plasma

– Survival of heavy quarkonium. It has been reasonably well established that
charmonium and bottomonium survive at temperatures at least slightly above
the transition. There is still controversy about how far above the transition
temperature one can go before those states melt. Results have direct bearing on
dilepton emission. More solid results that also take into account dynamical light
quark contributions will come with increased computing power.

– Heavy quark diffusion. There are first exploratory results for heavy quark dif-
fusion constants that are substantially smaller than perturbative results, but are
in reasonable agreement with experimental findings that suggest an efficient ther-
malization of heavy quarks. So far all lattice calculations neglect contributions
from dynamical light quarks. This will come with increased computing power.
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– Shear and bulk viscosity. The electrical conductivity and shear and bulk
viscosities are very important for phenomenology. Obtaining reliable results is
computationally demanding as one has to deal with the gluonic part of the energy-
momentum tensor, which is strongly fluctuating. Results from calculations in a
statistical ensemble with only gluons suggest that the ratio of shear viscosity to
entropy density is very low, but these results need refinement and our knowledge
of transport with both gluons and quarks in the statistical ensemble is even more
meager.

– Electrical conductivity and thermal dilepton/photon rates. Results on
the thermal dilepton rate at vanishing momentum of the dilepton pair have been
obtained in the absence of dynamical quark degrees of freedom. These calcula-
tions agree fairly well with hard thermal loop perturbation theory. Unlike the
latter they, however, also lead to a finite electrical conductivity. An extension of
these calculations to nonzero momenta is needed to get access to thermal photon
rates. In the absence of quark degrees of freedom such calculations are possible
now and will soon be available. In all cases, however, it will be necessary to
include dynamical quark degrees of freedom in the calculations.

• The chiral limit

– Critical universality. We have first indications that, close to the transition,
the light quark chiral condensate and its susceptibility exhibit scaling properties
consistent with the expected O(4) universality class. Further study is needed to
confirm this, particularly with fermion formulations with good chiral properties.

– Restoration of the axial U(1) symmetry. Indications to date suggest that
this symmetry is not restored at the transition. These results need solid confir-
mation, since they could have direct bearing on the order of the transition.

B. Challenges

Clearly, we made substantial progress in understanding the thermodynamics of strong in-
teraction matter, its phase structure and the role of exact symmetries of the underlying
quantum field theory, quantum chromodynamics. Nonetheless there are still a number of
challenging open questions that need to be answered. Aside from the analysis of the equation
of state, which is on its way and soon will provide a solid basic input into the hydrodynamic
modelling of the equation of state, reaching better understanding of the phase structure at
nonzero chemical potential is most urgent. The calculations envisaged for the coming years
will at least settle the question whether the existing estimates for a location of a critical
point, which are based on lattice calculations performed on rather coarse lattices and thus
suffer from large discretization errors, can be confirmed and survive the continuum limit.
Furthermore, calculations with less-than-physical quark masses will allow us to establish
firm results on the QCD phase diagram in the chiral limit. This may well be the only limit,
in which strong interaction matter has a true phase transition.

The new generation of computers installed at leadership class computing facilities in Argonne
and Oak Ridge National Laboratory as well as Lawrence Livermore National Laboratory in

20



combination with the resources operated by USQCD at National Laboratories offer many
opportunities to bring us closer to answers for these challenging questions. Nonetheless, we
are also in need of substantial resources on future even more advanced computing platforms.
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