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I. EXECUTIVE SUMMARY

This white paper describes the opportunities for lattice QCD (LQCD) to play a key role
in supporting the future experimental high-energy physics program in tests of the Stan-
dard Model and searches for new physics. Lattice calculations are most broadly relevant
for experiments at the intensity frontier, but they will also play key roles in interpreting
measurements at the energy and cosmic frontiers. We focus on the plans of the U.S. lattice
QCD Collaboration (USQCD) for the next five years in this area. Companion documents,
Lattice Gauge Theories at the Energy Frontier, Lattice QCD for Cold Nuclear Physics, and
Computational Challenges in QCD Thermodynamics, address prospects in other areas of
high-energy physics and nuclear physics for which lattice calculations are essential.

The methods of LQCD are now validated at the percent-level for a wide range of quantities,
and have, over the last five years or so, obtained fully controlled results for about 20 hadronic
matrix elements, with errors ranging from 0.5%–10%. Many of these results are essential in
order to use existing experimental results to constrain the CKM parameters in the Standard
Model (SM) and to search for physics beyond.

In the next five years, LQCD can play an expanded role in the search for new physics at the
intensity frontier. We outline a program of calculations matched to experimental priorities,
involving three main directions:

• We will calculate the new, more computationally demanding, matrix elements that are
needed for the interpretation of planned (and in some cases old) experiments. These
include the hadronic contributions to the muon g − 2, nucleon matrix elements for
muon to electron conversion experiments, nucleon matrix elements for neutrino quasi-
elastic scattering, long-distance contributions to kaon mixing and to K → πνν̄ decays,
and the SM prediction for CP violation in K → ππ decays (ε′). These require new
methods, but the methodology is at a fairly advanced stage of development.

• We will steadily improve the calculation of the matrix elements needed for the CKM
unitarity fit, most notably B → D(∗) form factors (needed for |Vcb|), B → π form
factor (needed for |Vub|), and B-B̄ mixing matrix elements. We forecast improvements
by factors of 2–4 over the next five years, with most quantities having errors at or
below the percent level. Key to achieving this will be the use of physical light quark
masses. These improvements will significantly tighten the constraints on the SM, and
provide better SM predictions for other rare processes.

We will also improve the determinations of the quark mass and the strong coupling
constant to unprecedented accuracies. The bottom quark mass and αs in particular
will have important applications in high-precision Higgs studies at future colliders.

• At the accuracy we propose to obtain, we will need to include the effects of isospin
breaking, electromagnetism, and dynamical charm quarks. We will thus need to re-
validate our methods by comparing hadron masses to experiment, now with sub-
percent accuracy.

To achieve these goals will require continued investment in hardware and software develop-
ment, as well as the support of postdoctoral researchers and junior faculty.
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II. INTRODUCTION

One of the foremost goals of high-energy physics is to test the Standard Model of particle
physics (SM) and to search for indications of new physics beyond. Towards this aim, the
experimental high-energy physics program is pursuing three complementary approaches:
experiments at the “energy frontier” try to directly produce non-Standard Model particles
in collisions at large center-of-mass energies; experiments at the “cosmic frontier” look for
astronomical evidence of new interactions and aim to detect cosmically-produced non-SM
particles through their interaction with ordinary matter; while experiments at the “intensity
frontier” [1] make precise measurements of rare processes and look for discrepancies with
the SM. Because intensity-frontier experiments probe quantum-mechanical loop effects, they
can be sensitive to physics at higher energy scales than those directly accessible at the
LHC, in some cases as high as 1,000 TeV or even 10,000 TeV [2]. Contributions from new
heavy particles may be observable as deviations of the measurements from SM expectations,
provided both the experimental measurements and theoretical predictions are sufficiently
precise.

In many cases, and at all three frontiers, the SM predictions require calculations of hadronic
properties such as decay constants, form factors, and meson-mixing matrix elements. These
properties emerge at length scales where the underlying physics of quantum chromodynamics
(QCD) is nonperturbative. Lattice gauge theory provides the only known method for ab
initio results with controlled uncertainties, by casting the basic equations of QCD into a
form amenable to high-performance computing. Thus, facilities for numerical LQCD are
an essential theoretical adjunct to the experimental high-energy physics program: LQCD
results are necessary for interpreting the results of many present and planned experiments
as tests of the SM and searches for new physics.

During the past decade, the focus of many high-intensity experiments was the study of
the quark-flavor sector. Heavy-flavor experiments such as BaBar, Belle, CDF, DØ, CLEO-
c, and (more recently) BES III and LHCb established the oscillation of neutral Bs- and
D-mesons, and made numerous measurements of decay branching fractions of B and D
mesons, including the first measurements of leptonic B+- and Bs-meson decays. Much of
the LQCD community effort over this same time period was therefore dedicated to calcu-
lating the corresponding hadronic matrix elements of operators in the electroweak effective
Hamiltonian. Theoretical developments and increased computing power spawned a rapid
maturation of LQCD calculations of electroweak matrix elements and ushered in the era of
precision LQCD. With precise LQCD calculations available, heavy-flavor experiments mea-
sured the parameters of the Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing matrix and
established that the CKM paradigm of CP -violation describes experimental observations at
the few-to-several-percent level. Thus LQCD played an important role in facilitating the
quantitative comparison between theory and experiment that led to a share in the 2008 No-
bel Prize in physics for Kobayashi and Maskawa. Continued progress in testing the Standard
Model in the charm and bottom sectors will depend as much on improved LQCD calculations
as on future super-flavor factories.

In the coming decade, applications of lattice QCD to the lepton-flavor sector will come to
the forefront. The Muon g − 2 Experiment at Fermilab expects to reduce the uncertainty
in the muon anomalous magnetic moment by a factor of four in the hope of definitively
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confirming or refuting the current ∼ 3σ discrepancy between experiment and the SM. Muon-
to-electron conversion experiments will require nucleon matrix elements from lattice QCD
to interpret any observed new-physics signals in terms of underlying new-physics models.
Neutrino experiments will require lattice QCD calculations to understand the Q2 dependence
of the key signal process, quasielastic neutrino-nucleon scattering. The quark-flavor effort
will continue on several fronts: LHCb and Belle II will measure the rates for many rare B-
decays; NA62 at CERN plans to measure the K+ → π+νν̄ branching fraction, while KOTO
at J-PARC expects to see the first evidence for a nonzero KL → π0νν̄ decay rate, and
the proposed ORKA experiment at Fermilab and its successors aim to collect 1000 events
or more in both channels. Other searches for BSM effects in hadron physics will require
lattice calculations. Matrix elements with protons and neutrons are needed to interpret
constraints on CP violation from limits on electric dipole moments, to aid the search for
baryon-number violation in proton decay and neutron-antineutron oscillations, and even
to guide searches for dark matter and axions at the cosmic frontier. Finally, future high-
precision Higgs studies will require knowledge of the b quark mass to unprecedented accuracy.
Therefore, the LQCD community must expand its program to meet the needs of these and
other upcoming intensity-frontier experiments. In some cases, such as for many exclusive B-
meson decay processes, improving the precision of existing calculations is sufficient, and the
expected increase in computing power due to Moore’s law will enable a continued reduction
in errors. In other cases, such as for the muon g − 2 and the nucleonic probes of non-
SM physics, new hadronic matrix elements are required; these new lattice calculations are
typically computationally more demanding, and methods are under development.

This paper spells out the scientific priorities and plans for the next five years of the intensity-
frontier thrust of the USQCD Collaboration’s physics program. USQCD is an umbrella
collaboration that aims to provide both the computational resources and software infras-
tructure for the lattice gauge theory research community in the United States. Support has
been obtained from the high-energy physics and nuclear physics offices of DOE in the form
of (i) funds for hardware and support staff, (ii) computational resources on leadership-class
machines through INCITE awards, and (iii) SciDAC awards for software and algorithm de-
velopment. The first has consisted of two 4–5 year grants, the second of which extends
until 2014. Since its inception, the INCITE program has awarded computing resources to
USQCD every year. SciDAC has funded four software projects for LQCD, the most recent
beginning in 2012. All three components have been critical for progress in LQCD in the
past decade, and in particular for the successful USQCD quark-flavor physics program. The
primary purpose of USQCD is to support the high-energy and nuclear physics experimental
programs in the US and worldwide. To this end, scientific priorities are established by the
Collaboration and documented in white papers. USQCD’s internal and INCITE computing
resources are then allocated to self-directed smaller groups within USQCD to accomplish
these goals.

This white paper is organized as follows. In Sec. III we summarize the dramatic progress
in LQCD calculations in the past decade, with some emphasis on calculations carried out
under the auspices of USQCD. We highlight calculations that validate the whole paradigm
of numerical LQCD as well as those related to the intensity frontier, in particular flavor
physics. This review sets the stage for Sec. IV, which breaks down our five-year outlook by
physics topic: quark-flavor physics, charged-lepton processes, and nucleon matrix elements.
Broadly, the LQCD intensity-frontier effort has two main thrusts: (i) improving the precision
of present calculations and (ii) extending lattice methods to new quantities relevant for
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upcoming experiments. Both require greater computational resources, and, where possible,
we make forecasts for the expected lattice errors in five years based on the assumption
that computing resources continue to increase according to Moore’s law and that funding
to support postdocs and junior faculty in lattice gauge theory does not decrease. For the
interested reader, two appendices provide more technical details that justify the forecasts
presented in the main text. In Sec. V, we describe in some detail the computational resources
needed to undertake the calculations discussed earlier. We summarize the case for continued
support of the USQCD effort in Sec. VI.

The future success of the intensity-frontier program hinges on reliable SM predictions on
the same time scale as the experiments and with commensurate uncertainties. Many of
these SM predictions require nonperturbative hadronic matrix elements that can only be
computed numerically with LQCD. The USQCD Collaboration is well-versed in the plans
and needs of the experimental intensity-physics program over the next decade, and will
continue to pursue the necessary supporting theoretical calculations. Implementation of
the five-year program outlined in this white paper will require dedicated LQCD computing
hardware, leadership-class computing, and efficient LQCD software. Therefore continued
support of USQCD computing infrastructure and personnel is essential to fully capitalize
on the enormous investments in the high-energy physics and nuclear-physics experimental
programs. Indeed, LQCD calculations for the intensity frontier may play a key role in
definitively establishing the presence of physics BSM and in determining its underlying
structure.

III. CURRENT STATUS OF LATTICE QCD

In order to assess the prospects for future LQCD calculations, it is worthwhile recalling the
huge strides made over the past decade or so. Much of this success stems from the increased
support for LQCD infrastructure in the United States, as well as similar efforts in Japan,
the UK, Germany, and Italy. We begin this section with a discussion of calculations that
demonstrate the basic soundness of numerical LQCD. This work shows that lattice gauge
theory has been able to reproduce hadron masses and decay amplitudes, even in cases where
the correct result was not known in advance. We then provide a more detailed survey of
quark flavor physics, because it most clearly illustrates the ideas behind the intensity-frontier
program of the coming decade.

A. Validation of lattice QCD methodology

Although it lies outside intensity-frontier physics, the best place to start a discussion of the
validation of LQCD methodology is the hadron spectrum. An ab initio understanding of
hadron masses was one of the original attractions of LQCD. These masses are intrinsically
interesting, because they are the origin of the mass of everyday objects. Figure 1 shows
a summary of many hadron spectrum calculations, taken from a recent review [3]. These
calculations encompass the light hadrons and also mesons with a heavy b or c quark bound

to a light antiquark (H(∗)), strange antiquark (H
(∗)
s ), or each other (b̄c yields B

(∗)
c ). The
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most striking feature of Fig. 1 is that so many calculations with different underlying details
all agree well with experiment. Moreover, the mass of the nucleon, the source of everyday
mass, has now been calculated with 1–2% accuracy. In addition, many calculations of the
charmonium and bottomonium systems (not shown here) have obtained accurate results.
Finally, the simplest decay matrix elements, fπ and fK , have long agreed with the values
in the Review of Particle Properties by the Particle Data Group (PDG), the most recent of
which is Ref. [4].

Before expressing complete confidence in LQCD calculations for intensity-frontier applica-
tions, many particle physicists wanted to see genuine predictions, in contrast to the post-
dictions just discussed. In work enabled by the US DOE lattice infrastructure projects
and their predecessors, USQCD groups have computed charmed-meson decay constants [8],
semileptonic form factors [6], and the masses of the Bc [9] and ηb [10] mesons before being
confirmed by measurements from experiments. As seen in Fig. 1, the prediction of the B∗c
meson mass awaits confirmation [11]. The charmed-meson semileptonic form factors are es-
pecially noteworthy, because they predict not only the normalization of the decay, but also
the kinematic distribution, as shown in Fig. 2 with the most recent of several measurements.

Another noteworthy development of the past decade lies in the determination of the QCD
coupling αs and the quark masses. These quantities are the fundamental parameters of
QCD, and the Lagrangian of lattice gauge theory contains free parameters corresponding to
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FIG. 1. Hadron spectrum from many different LQCD calculations. Open symbols denote masses

used to fix bare parameters; closed symbols represent ab initio calculations. Horizontal black bars

(gray boxes) show the experimentally measured masses (widths). b-flavored meson masses (B
(∗)
c and

H
(∗)
(s) near 1300 MeV) are offset by −4000 MeV. Circles, squares and diamonds denote staggered,

Wilson and domain-wall fermions, respectively. Asterisks represent anisotropic lattices (at/as < 1).

Red, orange, yellow and green and blue signify increasing ensemble sizes (i.e. increasing range of

lattice spacings and quark masses). For references, see Ref. [3].
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each one of them. To fix these bare parameters, 1 + nf hadronic quantities must be taken
from experiment; this step is necessary and no different from any continuum formulation of
QCD. Once the bare parameters are fixed, it is possible to convert them to renormalization
schemes used in perturbative treatments of the SM.

The most recent PDG Review [4] contains a review of QCD [12], which incorporates five
recent LQCD determinations of αs [13–17]. The work of Refs. [13, 14, 17] is based on data
generated under the auspices of USQCD, and has been thoroughly validated, in the sense
discussed above of postdiction and prediction [18, 19]. The PDG review of QCD also surveys
determinations of αs from perturbative-QCD analyses of high-energy scattering experiments.
It finds (in the MS scheme) [12]

αs(MZ) =

 0.1185± 0.0007, LQCD,
0.1183± 0.0012, high-energy scattering,
0.1184± 0.0007, combined.

(1)

The current status, therefore, is that LQCD quotes errors that are competitive and, arguably,
superior to those from perturbative QCD. More importantly, the LQCD and perturbative-
QCD averages of αs are in excellent agreement.

The most accurate determinations of the charmed and bottom quark masses come from
studying moments of quarkonium correlation functions [17], which also yield αs. These
correlators provide an example of a class of methods in which LQCD is used to compute
continuum-limit short-distance quantities that can then be compared with multi-loop con-
tinuum perturbative QCD calculations. In this case, parallel determinations using lattice
results and experimental data are possible. The continuum perturbative calculations [20]
can be matched either to LQCD results for correlators at spacelike momentum, or to e+e−

annihilation data for correlators at timelike momentum. For mc(3 GeV) (in the MS scheme)
the results are, respectively, 0.986(06) GeV [17] and 0.986(13) GeV [20]. For mb(10 GeV) the
respective results are 3.617(25) GeV [17] and 3.610(16) GeV [20]. As with αs, the agreement
is striking, and together the two results bolster the notion that the QCD of hadrons is the
same as the QCD of partons. A byproduct of this work is a precise ratio mc/ms = 11.85(16)
[21], which bootstraps the precise charmed quark mass to the light-quark sector.

FIG. 2. Comparison [5] of 2 + 1 LQCD calculations of D-meson form factors [6, 7] (curves with

error bands) with measurements from CLEO [5] (points with error bars).
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LQCD is the only way to determine the light-quark masses with any meaningful precision, so
their determination does not validate lattice methods. Nevertheless, they are an important
output of the last decade of LQCD research. Before LQCD brought the errors under control,
the quoted uncertainty on the strange quark mass was approximately 30% and it was not
clear whether the up quark mass was consistent with zero or not. Now several LQCD
calculations have controlled most of the dominant uncertainties [19, 22–24]. The PDG review
of quark masses [25] summarizes the overall uncertainties as 3%, 4%, and 7% for ms, md,
and mu, respectively. In the broader context of particle physics, these results are interesting
for several reasons. For example, in the SM, the quark-Higgs couplings are proportional to
the masses. Furthermore, the nonzero value of mu has implications for strong CP violation
and motivates axion searches.

B. Quark flavor physics

We focus here on progress during the last five years, which is the period since our 2007
white paper on this topic [26]. This period has seen a rapid maturation of calculations
of electroweak matrix elements. Five years ago, the era of precision lattice calculations
was just beginning. Lattice methods had been validated at the few percent level for a
range of spectroscopic quantities [26]. Accurate results were available for fπ (2.6% error)
and fK/fπ (∼ 1% error) using improved staggered fermions [27]. For quantities requiring
matrix elements of four-fermion operators, e.g., BK and f 2

BBB, and for heavy-quark decays,
first unquenched calculations were available but some errors were not fully controlled. In
addition, cross-checks from using multiple fermion discretizations were not yet available.

The present situation is greatly improved. Results with fully controlled errors are available
for nearly 20 matrix elements, in almost all cases with multiple independent calculations.
These quantities are the decay constants fπ, fK , fD, fDs , fB and fBs , semileptonic form
factors for K → π, D → K, D → π, B → D, B → D∗, Bs → Ds and B → π, and
the four-fermion mixing matrix elements BK , f 2

BBB and f 2
Bs
BBs . Errors have been steadily

reduced, such that sub-percent level is now possible for some quantities. One indication of
the maturation of calculations is that it is now appropriate to perform world averages of
lattice results, so as to provide the best input for phenomenological analyses [28, 29].1

The amplitudes listed so far all have one hadron in the initial state and zero or one in
the final state. They are especially straightforward to determine for several reasons. For
example, the finite-volume errors are suppressed exponentially. Nonleptonic decays such as
K → ππ are more challenging: although the conceptual framework for computing these
amplitudes has been available for twenty years, it was only in 2012 that the amplitude for
I = 2 was brought under control [30, 31].

In Table I, we give examples of the status of LQCD calculations, comparing lattice errors in
various matrix elements to those in the corresponding experimental measurements. Where
available, we also include forecasts made in 2007 for the expected errors in ∼ 2012 [26],

1 The two averaging efforts have recently joined and expanded to form the worldwide “Flavor Lattice

Averaging Group”, which plans to present updated averages on more extensive quantities in early 2013.
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TABLE I. History, status and future of selected LQCD calculations needed for the determina-

tion of CKM matrix elements. Forecasts from the 2007 white paper (where available) assumed

computational resources of 10–50 TF years. Most present lattice results are taken from latticeav-

erages.org [28]. Other entries are discussed in the text. The quantity ξ is fBs

√
BBs/(fB

√
BB).

Quantity CKM Present 2007 forecast Present 2018

element expt. error lattice error lattice error lattice error

fK/fπ |Vus| 0.2% 0.5% 0.5% 0.15%

fKπ+ (0) |Vus| 0.2% – 0.5% 0.2%

fD |Vcd| 4.3% 5% 2% < 1%

fDs |Vcs| 2.1% 5% 2% < 1%

D → π`ν |Vcd| 2.6% – 4.4% 2%

D → K`ν |Vcs| 1.1% – 2.5% 1%

B → D∗`ν |Vcb| 1.3% – 1.8% < 1%

B → π`ν |Vub| 4.1% – 8.7% 2%

fB |Vub| 9% – 2.5% < 1%

ξ |Vts/Vtd| 0.4% 2-4% 4% < 1%

∆Ms |VtsVtb|2 0.24% 7–12% 11% 5%

BK Im(V 2
td) 0.5% 3.5–6% 1.3% < 1%

which have proven to be quite accurate. The forecasts shown for future improvements are
discussed in Sec. IV and Appendix A.

It is important to note that, of the quantities in Table I, only for fK/fπ was a result available
in 2007 with all errors controlled. All other calculations have matured from having several
errors uncontrolled to all errors controlled over the last five years. For B → D(∗) form factors
and fB, lattice errors are at, or below, the level of the corresponding experimental errors.
USQCD calculations have played the major role in these reductions, and have solidified
the error estimates by performing multiple calculations of several quantities using different
fermion discretizations. For example, the world average for BK is based on four different
calculations, three of which were carried out under the auspices of USQCD.

These improvements have been possible because of a combination of the roughly 10-fold
increase in computational resources, significant algorithmic improvements, and improved
methods of theoretical analysis of the numerical data. The net effect has been that calcu-
lations have been possible with light-quark masses much closer to the physical values and
with several lattice spacings and volumes to control discretization and finite-volume errors.
Improved actions for domain-wall and staggered light quarks have reduced discretization er-
rors. Smaller lattice spacings have allowed the use of relativistic charm quarks (rather than
a heavy-quark action), increasing the precision in the charm sector, and enabling direct
simulation of the charm sea.

On the theoretical side, a major advance has been the introduction of so-called SMOM renor-
malization schemes for applying nonperturbative renormalization (NPR) to bilinears [32] and
four-fermion operators [33]. These schemes use non-exceptional momentum configurations,
which significantly reduces long distance contributions to correlation functions, and so leads
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FIG. 3. Recent CKM unitarity triangle fit [35]. The resulting parameters are ρ̄ = 0.136 ± 0.017,

η̄ = 0.349± 0.012 and A = 0.821± 0.014. The constraints labeled εK + |Vcb| (light blue), |Vub/Vcb|
(yellow), ∆Ms/∆Md (green), and BR(B → τν) + ∆MBs (pink) require lattice input, while the

others (SψK , α and γ) require minimal or non-lattice theoretical input. The solid ellipse encloses

the 1σ region.

to smaller uncertainties in normalization factors for the operators. Similarly, the intro-
duction of nonperturbative running (“step-scaling”) of operator normalizations has allowed
the matching to continuum renormalization schemes to be done at higher momenta where
perturbation theory (PT) is more reliable [34].

These improvements have, together with the extraordinary wealth of data from experiments,
led to stringent tests of the CKM description of flavor physics and CP violation. First row
unitarity (which relies on lattice results for fK/fπ and the K → π`ν form factor) is seen
to hold at the part-per-mille level [29, 36]. The status of constraints on the CKM unitarity
triangle is shown in Fig. 3. Overall, the CKM paradigm describes experimental observations
at the few-percent level. While this is a triumph of the SM, the improved precision has
unearthed a tension of around 3σ in unitarity fit, as shown in Fig. 3. A further long-standing
disagreement of ∼ 3σ remains between the result for |Vub| determined from exclusive decays
combined with lattice results and that from inclusive decays combined with the heavy-quark
expansion.

C. Summary

The discussion in this section indicates the considerable advances in and successes of LQCD
calculations over the last five years, but also highlights the need for further improvements.
As Table I shows, for most quantities lattice errors are significantly larger than those in the
corresponding experimental measurements. Thus LQCD remains the bottleneck in these
cases, and, if we are to continue to squeeze the vise on the SM using flavor physics, we must
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continue to reduce lattice errors. How this can be done is one of the two major topics in the
following section, and Table I shows forecasts for the improvements that are possible.

In addition, there are several existing and many upcoming experiments that need various
hadronic matrix elements in order to determine the SM “background” to new physics. Many
of these require harder lattice calculations. Three examples of important matrix elements
are (i) the long-distance contribution to the long-measured neutral kaon mass splitting,
∆mK , which can in principle provide a window onto new physics if we can calculate the
SM contribution; (ii) the hadronic vacuum-polarization and light-by-light contributions to
muon g − 2, which must be computed in order to allow the search for new physics from the
upcoming experimental measurement at Fermilab; and (iii) nucleon matrix elements of a
kind similar to the decay constants and form factors of mesons, which enter several arenas
at the energy and cosmic frontiers. LQCD methods to support these experiments are either
in hand or under active development. Discussion of these LQCD calculations forms the
second major topic of the following section.

IV. FUTURE LATTICE CALCULATIONS

In this section we describe a broad program of LQCD calculations that will be possible over
the next five years assuming that computer resources increase following Moore’s law. We
have organized this program according to physics topic or class of experiments for which
the calculations are needed. In each subsection, we explain the physics goals and their
relationship to the experimental program, describe the status of present LQCD calculations,
and explain what can be achieved over the next five years. Technical details providing
detailed justification for future forecasts are provided in Appendices A and B.

While the challenges to further reductions in errors depend on the quantity, there are many
common features. A key advance over the next five years will be the widespread simulation
of physical u and d quark masses, obviating the need for chiral extrapolations. Such simu-
lations have already been used for studies of the spectrum and several matrix elements with
improved Wilson sea quarks [23, 37, 38]. USQCD is generating ensembles with physical
masses for light sea quarks with highly-improved staggered quarks (HISQ) [39], domain-
wall fermions (DWF) [40, 41], and improved Wilson fermions [42, 43]. Indeed, this effort is
already well under way, as explained in Sec. V. These ensembles will also lead to reduced
discretization errors compared to earlier ensembles (e.g., the MILC asqtad ensemble [19])
because the actions are more highly improved.

A second advance will be the systematic inclusion of isospin-breaking and electromagnetic
(EM) effects. Once calculations attain percent-level accuracy, as is the case at present for

quark masses, fK/fπ, the K → π and B → D∗ form factors, and B̂K , one must study the
effects of EM and isospin breaking. A partial and approximate inclusion of such effects is
already made for light quark masses, fπ, fK and B̂K . Full inclusion would require nondegen-
erate u and d quarks and the incorporation of QED into the simulations. For some quantities
it may suffice to implement this only for the valence quarks (quenched QED), while in gen-
eral one must also include mass differences and electrical charges for the sea quarks. One
approach for both isospin and unquenched QCD+QED simulations is to reweight pure QCD
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configurations [44, 45]. One concern with QED is that the finite-volume effects will be en-
hanced due to the masslessness of the photon. In practice, to date, these effects seem to be
controllable.

A final across-the-board improvement that will likely become standard in the next five years
is the use of charmed sea quarks. These are included, for example, in the HISQ ensembles
being presently generated. While it is expected that the error associated with quenching the
charm quark is small for most quantities, this error is hard to estimate accurately without
a direct lattice calculation.

A. Quark Flavor Physics

The present status of LQCD calculations related to quark flavor physics is summarized above
in Sec. III B. Here we describe the future lattice calculations which will be needed to interpret
past and future experiments, which are naturally categorized according to the nature of the
lattice calculations. The first subsection discusses the “standard” matrix elements that
have been our focus since 2007 [26] and are summarized in Sec. III B, where the challenge
is to further reduce errors. Next we discuss lattice matrix elements needed for upcoming
experiments which are of comparable difficulty to those already being calculated. Then we
move to more challenging lattice calculations which are just now becoming possible and
which should reach maturity in the next five years. Finally we mention yet more challenging
quantities for which lattice methods are at an earlier stage of development.

1. Standard lattice matrix elements

Lattice-QCD calculations of matrix elements involving at most a single meson in both initial
and final states are already at a mature stage. As discussed in Sec. III B, they are already
playing an important role in flavor physics, because the methodology behind them is mature
and widely understood. Nevertheless, in most cases lattice errors are larger than those in
the corresponding experimental quantities, as shown in Table I. Thus, we can significantly
tighten constraints on the SM by improving these calculations, with the aim of reducing,
and ultimately removing, the gap between lattice and experimental errors. The forecasts in
Table I indicate that we can achieve very significant improvements over the next five years.

These forecasts are based on detailed estimates of how the dominant errors in each quan-
tity will be reduced by the expected increase in computing resources and known technical
advances. Key improvements to all quantities come from the sources described above, par-
ticularly the use of physical quark masses, finer lattice spacings and improved lattice actions.
In some quantities what is also needed is an improvement in the statistical errors, which
will be achieved using the ensembles of larger lattices that are being generated. Improved
methods of normalizing operators (in particular the SMOM scheme [32, 33]) will also play
an important role.

In Appendix A we give a detailed, technical discussion explaining the forecasts for future
errors given in Table I. Here we highlight those quantities where the improvements are
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particularly important either for their potential to tighten the constraint on the SM or
because of their connection with future experiments.

• B → D(∗) form factors. Lattice results for these form factors (particularly that for
B → D∗`ν) allow for the determination of |Vcb| from the measured decay rates. Un-
certainty in |Vcb| at present limits the strength of the constraint on the CKM unitarity
triangle coming from εK . The error, which is magnified since it is |Vcb|4 that enters,

is much larger than the lattice error in the relevant matrix element, B̂K . The error in
|Vcb| also provides a major source of uncertainty in the SM prediction for K → πνν̄
(a process discussed further in Sec. IV A 3 below).

For the B → D∗ form factor at zero recoil, the gap between experimental errors (1.3%)
and lattice errors (presently ∼ 1.8%) has narrowed considerably over the last five years.
In the next five years, we expect the lattice error to drop below the experimental error,
as shown in Table I. Particularly important for this are the use of lattices with small
lattice spacings and physical light-quark masses, and the extension of the calculation
to nonzero recoil.

These form factors also provide examples of LQCD responding quickly to new experi-
mental results by providing needed theoretical input. Most notable is the recent calcu-
lation by the Fermilab-MILC collaboration of the SM prediction for R(D) = BR(B →
Dτν)/BR(B → D`ν) with ` = e or µ [46]. Recent measurements of this quantity, and
the analogous R(D∗), differ from existing SM predictions (by 2σ and 2.7σ, respectively,
for R(D) and R(D∗) [47]. Those SM predictions were based, however, on models of
QCD, not ab initio QCD. Realizing that it was much easier to obtain accurate results
for these ratios than for the form-factors themselves, the Fermilab-MILC collaboration
responded quickly (using lattice data that were already in hand), and gave the first
LQCD result for R(D) [46]. Their result reduces the discrepancy with experiment to
1.7σ. At present, experimental errors (∼ 16%) dominate over lattice errors (4.3%), so
further lattice improvements are not needed in the short run. But in the longer term
this situation may change, and should be straightforward to reduce the lattice error
by a factor of 2 over the next five years.

• B → π form factors. These form factors provide the primary method of deter-
mining |Vub|, and improvement is sorely needed. This is both because of the possibil-
ity of significantly tightening the unitarity constraint (by narrowing the light-yellow
“|Vub|/|Vcb|” band in Fig. 3), but also because there is a long-standing disagreement
between the lattice determination and that obtained using inclusive decays and the
heavy-quark expansion. The discrepancy is about 3.6σ at present (see Appendix A
for more details). The good news is that significant improvement is possible. While
present lattice errors are about double those of experiment, we forecast a halving of
the former by 2014 and a further halving by 2018. This improvement is due to a
combination of all the factors noted above.

• B-meson quantities. Much of the improvement in calculations for quantities in-
volving D-mesons in the last five years has been due to the use of improved actions
and smaller lattice spacings. This allowed for relativistic charm quarks to be simu-
lated, with automatically normalized vector and axial currents. In the next five years,
increases in computational resources will allow us to move in a similar direction for
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bottom quarks. Fully relativistic b-quarks are unlikely to be achieved until later, but,
through extrapolation from somewhat lighter quarks, significant reductions in errors
are possible. This is already the case for the HPQCD calculation of fBs using HISQ
heavy quarks [48]. In addition, improved methods of simulating b-quarks at their phys-
ical mass, e.g., the nonperturbatively tuned clover action [49, 50] used in Ref. [51], will
provide complementary information. Reductions in present errors for decay constants,
form-factors and mixing matrix elements by a factor of 2 or more are forecast over the
next five years.

• fK/fπ and fKπ+ (0). While these quantities are calculated with 0.5% errors, further
improvement is needed to match experimental errors and tighten the test of unitarity
from the first row of the CKM matrix. With errors this small, isospin breaking and
EM effects must be considered. We forecast errors attaining the experimental level of
0.2% by 2018.

• Finally, we note that, for a few quantities, there is little impetus for improvement in
the short term. Most notable is B̂K , where percent-level accuracy has been achieved
through a concerted worldwide effort, with thorough cross checks.

2. Straightforward extensions of present calculations

There are a number of quantities where, by extending present methods, LQCD can provide
matrix elements needed to constrain theories of new physics through their contributions to
rare processes.

• BSM contributions to K, D and B-meson mixing and ∆ΓB. Flavor-changing
neutral processes such as neutral meson mixing are suppressed in the SM. In BSM
theories, by contrast, there is, generically, only kinematic suppression due to the heavy
masses of new particles, and it is quite possible that BSM contributions are not that
much smaller than those in the SM. Thus these processes provide a sensitive window
into new physics. To provide detailed constraints on the models, however, one needs to
know the matrix elements of four-fermion operators having all spin structures, since
the left-handed nature of the weak interactions is not reproduced in general BSM
theories.

For each of the K, D and B systems there are four new matrix elements in addition to
those required in the SM. The required methodology and theoretical calculations are
straightforward generalizations of those already undertaken. Results of comparable
accuracy to those already obtained for the corresponding SM matrix elements (B̂K for
kaons, f 2

Bs
BBs for Bs-mesons, etc.) should be available by 2014. For the D case, which

can be treated using relativistic quarks such as HISQ, we expect accuracy comparable
to that for B̂K .

For B-mesons, there is an additional motivation for the calculation of the extra matrix
elements, since two of them (for both B and Bs) enter into the leading order HQET
expression for the width difference ∆Γ [52, 53].
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Several calculations are already underway. For B-mesons, preliminary results are given
in Ref. [54]. For kaons, results with nf = 2 + 1 have been obtained with DWF [55]
and staggered fermions [56], with other calculations underway.

• B → K`+`− and related form factors. This process can provide another sensitive
window into new physics, but this requires accurate knowledge of the SM prediction.
It is now well measured, and increasingly accurate results from LHCb, and eventually
Belle II, are expected. The SM prediction requires knowledge of the vector and tensor
b→ s form factors across the kinematic range. Present theoretical estimates use light-
cone sum rules, but several first-principles LQCD calculations are nearing completion,
as reviewed in Ref. [57]. The calculation is similar to that needed for the semi-leptonic
B → π form factor, and we expect similar accuracy to be obtained over the next five
years.

A related process is the baryonic decay Λb → Λ`+`−, recently measured by CDF. Here
the extra spin degree of freedom can more easily distinguish between SM and BSM
contributions. An LQCD calculation of the required form factors has recently been
completed, using HQET to describe the b quark [58]. Errors of ∼ 10–15% in the form
factors are obtained, which are comparable to present experimental errors. The latter
errors will decrease with new results from LHCb, and so improved LQCD calculations
and cross-checks are needed. Although the calculation is conceptually similar to that
for B → K`+`−, given the presence of baryons we expect the errors for Λb → Λ`+`−

to lag somewhat behind.

There are also experimental measurements of the closely related processes B →
K∗`+`−, B → K∗γ and Bs → φγ. Lattice calculations of the required form factors
are, however, not straightforward, since they involve a resonance in the final state.
Such calculations actually become harder as one approaches physical quark masses, as
the width of the K∗ increases. They are of the “very challenging” type, examples of
which are discussed below.

• Non-SM form factors for K → π, B → π and B → K. The B → K vector
and tensor form factors just discussed are also needed to describe decays involving
missing energy, B → KX, in BSM theories [59]. Analogous form factors are needed
for B → πX and K → πX decays [59]. The tensor form-factors are also needed
to evaluate some BSM contributions to K → π`+`− [60]. Thus it is of interest to
extend the present calculations of vector form factors in K → π and B → π to include
the tensor matrix elements. Since these are straightforward generalizations of present
calculations, we expect that comparable accuracy can be obtained quickly.

3. More challenging calculations

With recent advances in the methods of computational quantum field theory, numerical
algorithms and computer technology, the weak interactions of the strange quark can be
studied with increasing scope and precision. This opens exciting possibilities to pursue
physics beyond the standard model because of beautiful and powerful experiments studying
the decays and mixing of K mesons carried out over the past 40 years (in particular the NA48
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and KTeV measurements of ε′/ε) as well as new experiments now underway or being actively
planned. In contrast to the charm and bottom quarks, whose mass scales are sufficiently
large that O(mqa) errors require careful attention, strange quarks are easily treated using
standard lattice methods. Further, the relatively small mass of the kaon implies that decay
final states are dominated by two pions, the case for which accurate theoretical control of
QCD rescattering effects has been achieved [61, 62]. Initial results suggest that calculation
of the two complex decay amplitudes A0 and A2 describing the decays K → (ππ)I for I = 0
and 2 respectively are now realistic targets for large-scale lattice QCD calculations. This
would allow a verification of the ∆I = 1/2 rule and a first-principles calculation of ε′/ε
within the SM.

The K → ππ amplitudes are dominated by first order weak processes in which a single W±

is exchanged. In the past, the only second order quantities that were accessible to LQCD
were those which are dominated by short distances, e.g., the CP -violating parameter εK in
K0-K0 mixing. These can be represented by matrix elements of local operators. However,
roughly 5% of εK [63] and 30% of the KL-KS mass difference, ∆MK , [64, 65] come from
“long distances” in which the two flavor-changing interactions are separated by distances of
of order Λ−1

QCD. Then both interactions, each represented by a four-fermion operator, must
be explicitly included in a lattice calculation, a challenge which may now be possible to
meet with present and near-future resources. Again, the effects of real intermediate states
(rescattering effects) introduce finite-volume distortions. It has recently been demonstrated,
however, that, in the case of kaons, these distortions can be corrected in a nonperturbative
manner as part of the lattice calculation [66, 67].

The extension of lattice methods to second-order weak processes in general would have
considerable impact on the search for new physics. Since the SM contributions are small, such
processes are sensitive windows into new physics. This sensitivity would be enhanced were we
able to predict the SM contributions accurately. One example is ∆MK , but others for which
lattice calculations may become possible are the decays K0 → π0νν̄ and K+ → π+l+l−.
In particular, we note that new physics contributions to K0 → π0νν̄ and K+ → π+l+l−

are highly correlated with those to ε′, so that combining these processes will lead to much
tighter constraints (see Ref. [68] and talk by U. Haisch [69]). We also stress that, at present,
the K+ → π+l+l− decay is less favored experimentally because of the large uncertainty in
the SM prediction. Were lattice calculations able to significantly reduce this uncertainty,
this process would become of greater experimental interest.

We now give a brief summary of the future prospects for lattice calculations of the above-
mentioned quantities. A more detailed discussion is given in Appendix B.

The complex I = 2 K → ππ decay amplitude A2 has now been computed using DWF with
15% errors [30, 31]. In the next two years, the addition of two smaller lattice spacings should
reduce the dominant discretization error, leading to a total error of ∼ 5%. At this level,
isospin violation must be included, which may be within reach on a five-year timescale. The
I = 0 amplitude is considerably more challenging, with only trial calculations attempted
to date [70]. As described in Appendix B, first physical results for A0 with 15% errors are
expected by 2014, and a 10% error appears possible by 2018. Since A0 is the major source
of uncertainty in ε′, similar errors are expected for that quantity.

The first second-order weak process to be tackled in detail will be ∆MK . A method has been
worked out in principle [66, 67], and there is a pilot numerical study [71–73]. The calculation
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is more challenging than those for the K → ππ amplitudes, with a key issue being the need
to include dynamical charm quarks so as to enforce GIM cancellations. For a calculation at
such an early stage in development, it is difficult to forecast the level of resources that will
be required to obtain an accurate, controlled result. Pursuing this calculation will, however,
be a major priority in the USQCD kaon program.

As methods are honed, the next step will be to extend the methods to calculations of the
amplitudes for K+ → π+νν, KL → π0νν and K → π`+`−. The difficulties here are similar
to those for ∆MK , including the need for dynamical charm. We view these as a higher
priority than studying the long-distance contribution to εK , in light of the ongoing NA62
experiment at CERN, the planned KOTO experiment at J-PARC, and opportunities for
more sensitive measurements at Fermilab.

4. Very challenging calculations

In this subsection we briefly discuss several very interesting, but also very challenging,
LQCD calculations on which progress may occur during the next five years. These concern
CP violation in D decays, DD̄ mixing, and light-cone distribution functions for B mesons.
For these quantities the methodology is not yet mature, but some preliminary ideas have
been suggested.

Recently, LHCb has presented evidence for CP violation in D → ππ and D → KK̄ decays,
since confirmed by CDF. The observed rate is larger than that predicted from the SM in
various model calculations, and thus could indicate contributions from new physics. What
is needed, however, is a reliable SM calculation; even a result with a large, but reliable, error
would have a large impact. This need will become even more acute over the next five years
as LHCb and Belle II improve the experimental measurement.

It is very challenging to reliably determine the SM prediction for such CP violation. In
fact, the calculation is more challenging than that for K → ππ decays, which, as discussed
above, represent the present frontier of lattice calculations, with methods in place and first
results just appearing.

We briefly describe the additional challenges faced in D decays. In the kaon case, one must
deal with the fact that two-pion states in finite-volume are not asymptotic states, and the
presence of multiple quark-disconnected contractions. For D decays, even when one has
fixed the strong-interaction quantum numbers of a final state (say to I = S = 0), the strong
interactions necessarily bring in multiple final states. For example, ππ and KK mix with
ηη, 4π, 6π, etc.. The finite-volume states used by lattice QCD are inevitably mixtures of
all these possibilities, and one must learn how, in principle and in practice, to disentangle
these states so as to obtain the desired matrix element. Recently, a first step towards
developing a complete method has been taken [74], in which the problem has been solved
in principle for any number of two-particle channels, and assuming that the scattering is
dominantly S wave. This is encouraging, and it may be that this method will allow one
to obtain semi-quantitative results for the amplitudes of interest. We expect that turning
this method into practice will take 3–5 years due to a number of numerical challenges (in
particular the need to calculate several energy levels with good accuracy). We also expect
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that it will be possible to generalize the methodology to include four particle states; several
groups are actively working on the theoretical issues. It is unclear at this stage, however,
what time-scale one should assign to this endeavor.

Mixing occurs in the D-D̄ system, although there is no clear evidence yet for CP violation
in this mixing [4]. As noted above, the short-distance contributions can be calculated for
D mesons using LQCD, as for kaons and B-mesons. The challenge, however, is to calculate
the long-distance contributions. As in the case of ∆MK discussed above, there are two
insertions of the weak Hamiltonian, with many allowed states propagating between them.
The D system is much more challenging, however, since, as for the decay amplitudes, there
are many strong-interaction channels having E < mD. Further theoretical work is needed
to develop a practical method.

The light-cone distribution function encodes the part of the Fock state wave function needed
for high-energy exclusive processes, in particular nonleptonic B decays, such as B → Kπ,
B → ρρ, etc. Moments of the distribution function can be expressed as hadron-to-vacuum
matrix elements of local operators. The leading moment is proportional to the decay con-
stant, and the first one or two nontrivial moments have been calculated for π, ρ, φ, K,
and K∗ with errors of order 10% for nf = 2 [75] and nf = 2 + 1 [76]. These results are
already useful for B decays to these light mesons, and similar results for the moments of the
B-meson distribution amplitude should be straightforward.

B. Charged lepton physics: Muon g − 2 and Mu2e

During the next five years, two important muon experiments will be mounted and carried out
in the US. For one of them, a new measurement of the muon’s anomalous magnetic moment,
the largest theoretical uncertainties by far come from nonperturbative QCD. The other, a
search for muon-to-electron conversion, aims to observe charged lepton-flavor violation for
the first time. If successful, it would be evidence for a non-SM interaction, and lattice QCD
calculations would be needed to interpret the nature of this interaction. Here, we discuss
how lattice QCD relates to these two experiments.

1. Muon anomalous magnetic moment 2

The muon anomalous magnetic moment provides one of the most precise tests of the Stan-
dard Model of particle physics (SM) and often places important constraints on new theories
beyond the SM [1]. The current discrepancy between experiment and the Standard Model
has been reported in the range of 2.9–3.6 standard deviations [77–79]. With new experi-
ments planned at Fermilab (E989) and J-PARC (E34) that aim to improve on the current
0.54 ppm measurement at BNL [80] by at least a factor of 4, it will continue to play a central
role in particle physics for the foreseeable future.

2 This topic is also discussed in the companion white paper Lattice QCD for Cold Nuclear Physics.
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Owing to the nonperturbative nature of QCD, the hadronic corrections to the muon g−2 are
the largest source of error in the SM calculation. These errors must be reduced to leverage
the new experiments [1]. The hadronic corrections enter at order α2 through the hadronic
vacuum polarization (HVP), shown in Fig. 4, and α3 through hadronic light-by-light (HLbL)
scattering, shown in Fig. 5, as well as higher order HVP contributions.

The HVP contribution to the muon anomaly has been precisely computed to an accuracy of
0.6% using experimental measurements of e+e− → hadrons and τ → hadrons [78, 79]. The
result including τ data is about 2 standard deviations larger than the pure e+e− contribu-
tion, and reduces the discrepancy with the Standard Model to 2.4 standard deviations [78].
The former requires isospin corrections which may not be under control. Alternatively,
ρ-γ mixing may explain the difference and bring the τ -based result in line with that from
e+e− [81]. LQCD calculations serve as an important independent check on these results, but
at the moment statistical errors on lattice calculations of aµ(HVP) are at about the 3–5%
level [82–87], and important systematic errors remain. Most significant is that, for light
quark masses, the errors on the low-momentum region of Π(Q2) are not small enough, nor
are there sufficient points available in the crucial region, Q2 ∼ m2

µ, to adequately estimate
aµ(HVP). Quark masses are still too heavy (and errors are still too large for light masses),
so fits are model-dependent. The good news is that all of these points are being addressed
in the latest calculations. Lattice calculations using model independent fit functions [88],
noise reduction techniques [89], twisted boundary conditions [87], charmed sea quarks [90],
and physical light quark masses on large lattices are underway. Large error reductions over
the next one to two years are not only possible, but likely. To get to the 1% level, or better,
disconnected diagrams like the one shown on the right in Fig. 4 and isospin breaking effects
must be incorporated to complete the calculation. At this level, the lattice QCD calculation
becomes competitive with the traditional one based on e+e− and τ data, and may provide
insight into the discrepancy between the two. Finally, we note that the HVP lattice calcu-
lation can be used to compute the QCD running of the fine structure constant, which plays

FIG. 4. Hadronic vacuum polarization diagrams contributing to the muon anomaly. The horizontal

lines represent the muon. The blobs formed by the quark loops represent all possible hadronic

intermediate states. Right panel: disconnected quark line contribution.

FIG. 5. Hadronic light-by-light scattering diagrams contributing to the muon anomaly. The

horizontal lines represent the muon. The blobs formed by the quark loops represent all possible

hadronic intermediate states. Right panel: one of the disconnected quark line contributions.
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an important role in precision electroweak constraints of BSM theories.

The HLbL contribution to the muon anomaly cannot be computed using data from exper-
iment and a dispersion relation as for the HVP contributions. Thus present estimates of
this contribution use models, which have errors estimated in the 25-40% range [91, 92] (i.e.
roughly half the size of the present error from the HVP). If not reduced, these errors will
dominate over the HVP error as the latter is reduced (either from more experimental data,
lattice calculations, or both). Thus there is a crucial need for an ab initio calculation, and
the prior absence of such a calculation has been used as a reason not to do the new experi-
ment. Fortunately, significant progress has been made on an ab initio method using LQCD,
and the prospects for achieving a calculation with ∼ 20% errors in the next five years are
good, as we describe below. Assuming this, and a reduction of the HVP error by a factor of
2, and the expected reduction in experimental errors, then the present central value would
lie 7-8σ from the SM prediction.

First LQCD results for the single quark loop part of the HLbL contribution (Fig. 5, left panel)
have been reported recently [93]. The calculation is performed using a novel technique that
combines both QED and QCD on the lattice in a single non-perturbative framework [94].
The method can be checked in pure QED, where the LbL term has been calculated directly
in perturbation theory, allowing a benchmark for the procedure. This test was performed
successfully in Ref. [95], showing the significant promise of the method. Much effort is
still needed to reduce statistical errors, extrapolate to zero momentum transfer, and many
systematic errors remain uncontrolled. However, first signs of the HLbL contribution rising
above the Monte-Carlo noise are encouraging. The calculation is quenched with respect to
QED, so the sea quarks are not charged, and potentially large contributions are missing (i.e.,
diagrams like the one shown in the right panel of Fig 5). This can be fixed simply by using
dynamical QCD+QED gauge configurations, or by reweighting the quenched ensembles. All
of these approaches are under investigation.

Intermediate calculations are also being done, or considered, that will check both model and
lattice calculations: for example, the π0 → γ(∗)γ(∗) vertex function [96], the axial-vector–
vector–vector three-point function [97], the chiral magnetic susceptibility [98], as well as the
four-point vector correlation function in QCD needed for the HLbL amplitude, computed at
select fiducial values of the momenta at each vertex. The first of these is also directly related
to experimental measurements of the Primakoff effect, γA → γγ, which is dominated (like
HLbL) by the pion pole.

The goal, including lattice calculations, from the INT workshop on the HLbL contribution
to the muon anomaly [99], was to reduce the HLbL error to 10% from the current model
uncertainty of 25–40% by 2016–17. Reaching this milestone is possible with sustained effort
on the lattice calculations and continued advances in computer power, but is not guaranteed.

2. Muon-to-electron conversion

In the Standard Model with neutrino masses and mixing, charged-lepton flavor violation is
possible but suppressed by many factors, particularly the small splittings of neutrino mass
eigenstates. Thus, any observation of µN → eN , where N is a nucleus, or the related
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process µ→ eγ would be an unambiguous sign of new physics. Many experiments searching
for charged-lepton flavor violation are running or are on the horizon, motivated by pure
exploration and models of new physics that suggest a measurable rate. The MEG experiment
at PSI is currently searching for µ → eγ, and an improved search for µ → eee at PSI (the
Mu3e Experiment) has also been proposed. The Mu2e Experiment at Fermilab aims to
improve the sensitivity to µN → eN by four orders of magnitude.

To interpret these experiments, especially if a discovery is made, lattice-QCD calculations
are needed, because the theory requires knowledge of the light- and strange-quark contents
of the nucleon [100, 101]. These are the matrix elements σπN = 1

2
(mu+md)〈N |(ūu+ d̄d)|N〉,

ms〈N |s̄s|N〉, and the ratio 〈N |(ūu − d̄d)|N〉/〈N |(ūu + d̄d)|N〉. (Where N now denotes a
nucleon.) The theory of µ-to-e conversion also requires vector matrix elements, replacing
mq q̄q with q̄γµq, but these can be measured in electron scattering.

These matrix elements can be computed in lattice QCD, although correlation functions for
nucleons are noisier than for meson, and the isoscalar contributions require disconnected di-
agrams. Many lattice collaborations have calculated the strange-quark content ms〈N |s̄s|N〉
with Nf = 2 + 1 and even Nf = 2 + 1 + 1 flavors and several different fermion formu-
lations [102–111]. The results obtained with different methods and lattice formulations
agree at the 1–2σ level. A recent compilation quotes an average value ms〈N |s̄s|N〉 =
40 ± 10 MeV [111]. Thus, lattice-QCD results already rule out older estimates that sug-
gested much larger values for ms〈N |s̄s|N〉, as large as ∼ 300 MeV. The more accurate
lattice results are now replacing the older, cruder results which had previously been used in
phenomenology [112].

Lattice-QCD can also provide first-principles calculations of the pion-nucleon sigma term
σπN [102, 104–106, 110] and the charm-quark content mc〈N |c̄c|N〉 [109, 113]. A realistic goal
for the next five years is to pin down the values of the quark scalar densities for q = u, d, s, c
with ∼ 10–20% uncertainties. Even greater precision can be expected on the timescale of
a continuation of Mu2e, which would either reach for greater sensitivity or exploit different
target nuclei to discriminate among models of new physics [101]. As discussed in Sec. IV C 4,
the same nucleon matrix elements are also needed to interpret some dark-matter detection
experiments [114–116].

C. Neutrino physics, underground physics, and related processes

Several aspects of particle physics require nucleon matrix elements [117], so we discuss the
underlying physics and status of calculations here. Further aspects of nucleon properties,
and, in particular, ongoing technical developments, are discussed in the companion white
paper Lattice QCD for Cold Nuclear Physics. That white paper also contains material on
LQCD calculations pertaining to nuclear forces, which will be needed to extract fundamental
physics from nucleons in atomic nuclei.
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1. Neutrino physics

The study of neutrino properties is a central part of particle physics. Future experiments,
from the upcoming NOvA and MINOS+ to future projects such as LBNE and neutrino
factories, have the potential to determine the mass hierarchy, to demonstrate the possible
existence of sterile neutrinos, and to discover the magnitude of CP violation in the lepton
sector.

Measurement of neutrino oscillation parameters, and the possible discovery of new neutrino
states, is limited by our understanding of the cross section at accelerator energies. The basic
signal process for νµ → νe oscillations is charged-current quasielastic (CCQE) scattering on
a bound neutron. It is described by the axial-vector form factor of the nucleon, FA(q2),
which is related to the matrix element 〈p|ūγµγ5d|n〉. Usually, the q2 dependence is modeled
by a dipole form [118]

FA(q2) =
gA

(1 + q2/m2
A)2

, (2)

with the normalization gA taken from neutron β decay. Unfortunately, this description is
known to be inadequate in the related process of electron-nucleon scattering [119], so fits
to this form are inevitably model dependent. Uncertainty in this form factor translates
into an uncertainty of around 40% in the CCQE cross section [120–123]. Perhaps more
alarmingly, different experiments are not in good agreement for mA, when fitting to Eq. (2).
The discrepancies could originate from nuclear effects in the target, but without an ab initio
understanding of the nucleon-level form factor, one cannot know.

The shape of the axial-vector form factor FA(q2) can be calculated from first principles
by merging constraints from analyticity [124] with lattice QCD. This approach has been
successful in quark flavor physics for |Vub| [125], as discussed above. Worldwide, the lattice-
QCD community has a significant, ongoing effort devoted to calculating FA(Q2) [126–129].
Until recently, results for the axial charge gA = FA(0) have unfortunately not agreed well
with neutron β decay experiments; see, e.g., Ref. [130] for a review. Now, however, two
papers with careful attention to the chiral extrapolation and excited states [131] and with
lattice data at physical up-down quark mass [132] find results in agreement with experiment,
gA ≈ 1.22–1.24. In addition to sensitivity to the chiral extrapolation, it is important to treat
finite-volume effects more carefully than with mesons.

The current status of neutrino-nucleon scattering sets two interesting targets for the desired
uncertainty in a lattice-QCD calculation of the form factor’s slope. On the one hand,
Ref. [121] finds an (asymmetric) 12–25% uncertainty from fitting the MiniBooNE data to
the model-independent z expansion. On the other, the (insufficiently justified) fits to the
dipole form factor result in a putative 5% uncertainty. Refs. [131, 132] report total errors
(apart from the omission of the strange and charmed sea) of a few per cent. Their work
suggests that both phenomenologically relevant targets can be reached with the gauge-field
ensembles described in Sec. V.

Also important for neutrino scattering is neutral-current elastic scattering. The physics
issues run parallel to those discussed here, but now we must calculate an isoscalar matrix
element with LQCD. The resulting disconnected diagrams make the calculations noisier and
costlier, so (as with other isoscalar matrix elements) we forecast a more modest precision of
∼ 20%.
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2. Baryon-number violation

Baryon-number violating processes, such as proton decay and neutron-antineutron mixing,
are needed to generate the observed baryon asymmetry of the universe. Extended experi-
mental searches have to date found no evidence for these processes, but future experiments
aim to exclude greater regions of the parameter space suggested by extensions of the Stan-
dard Model. The interpretation of these measurements as tighter constraints on the models
requires better knowledge of hadronic matrix elements, which LQCD can provide. They are
of the standard type, differing only in that the operators involve three fermions and that
one of the particles involved is a nucleon.

So far, there has been a small-scale effort devoted to calculating matrix elements for proton
decay. Typical matrix elements are 〈π|O|p〉, which is a key mode for water Cherenkov
detectors, and 〈K|O|p〉, which is a key mode for liquid-argon detectors. Here, O is a three-
quark operator. The only set of nf = 2 + 1 calculations uses DWF [133], and quotes results
for the relevant matrix elements with ∼ 20–40% errors. It should be straightforward, with
the larger ensembles now available and other improvements to reduce these errors to the
∼ 10% level.

Another low-energy process that could provide distinct evidence for baryon number viola-
tion is the transition of neutrons to antineutrons, which violates baryon number by two
units [134]. Experimentally, this can be searched for with large scale proton decay detectors
such as Super-K [135] or LBNE, and also with experiments with nearly-free neutrons [136].

Initial work on these matrix elements is currently underway [137]. The main challenge at
this stage is to obtain a statistically significant signal. We expect that a first result will
be obtained in the next 1–2 years, with errors of ∼ 25%, and that results with errors of
∼ 10% or smaller are achievable over the next five years. These calculations do not require
disconnected diagrams, so we can ultimately expect very accurate results.

3. CP violation and electric dipole moments

Flavor physics experiments (aided, in part, by the lattice-QCD calculations described above)
have demonstrated that SM CP violation is insufficient to explain the baryon asymmetry
of the universe. Consequently, there must be as yet undiscovered CP -violating interactions
beyond the SM. These could still show up in quark flavor-changing processes, but also
elsewhere, such as in nonzero electric dipole moments of leptons and nucleons [138].

Electric dipole moments (EDMs) of fundamental particles are odd under time reversal, so
the CPT theorem then implies that a nonzero value is a sign of CP violation. Searches for
nonzero EDMs of leptons and nucleons are, thus, a promising way to search for BSM sources
of CP violation [138]. We focus on the nucleon (free, or within nuclei), for which LQCD
calculations are necessary [139]. In principle, there are three sources of a fundamental EDM.
CKM CP violation makes a contribution to the nucleon EDM at the 3-loop level and lies well
beyond experimental sensitivity. The strong CP -violating interaction, θ̄GG̃, directly makes
a contribution to the nucleon, but not leptons. Finally, BSM sources of CP violation induce
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EDM-generating higher-dimension operators. Interestingly, the strong-CP contribution flips
sign between neutron and proton, while the BSM contributions need not flip sign.

LQCD calculations have been carried out for the matrix element needed for the strong-CP
contribution to the neutron and proton EDMs [140], and those needed for BSM theories are
underway [141]. This research is still in an early phase: once again disconnected diagrams
are needed. A reasonable and useful goal for the coming five years is a suite of matrix
elements with solid errors at the 10–20% level.

4. Dark matter and other new interactions

Searches for BSM contact interactions complement direct searches for new particles at the
LHC. To infer (limits on) their properties, one requires a set of nucleonic matrix elements
of the form 〈N |q̄Γq|N〉, where Γ encodes the spin structure. Examples include direct dark-
matter detection, axion searches, and looking for new TeV-scale interactions with neutron
β decay.

The cross section for detecting dark matter depends on how it interact with quarks inside
the detector of CDMS, COUPP, etc. In many models, the interaction is spin independent,
for example, if it is mediated by Higgs-boson exchange. In that case, the nucleon matrix ele-
ments σπN and ms〈N |s̄s|N〉 are needed to interpret the signal, just as for µ→ e conversion,
discussed in Sec. IV B 2.

An example of spin-dependent dark matter is the axion, which couples to SM matter via
the flavor singlet matrix element 〈N |q̄γµγ5q|N〉. It is especially interesting, because its
main motivation is to explain the strong CP problem. A first round of serious lattice-QCD
calculations of 〈N |q̄γµγ5q|N〉 has recently been carried out [108, 142, 143].

Finally, TeV-scale interactions, particularly those mediated by scalar and tensor exchange,
can be probed with very precise measurements of neutron beta decay properties [144]. Here,
the matrix elements 〈p|ūd|n〉 and 〈p|ūσµνd|n〉 must be computed. Because they are flavor
nonsinglets, disconnected diagrams are not needed. These matrix elements are part of the
program to study nucleon structure—see, e.g., Ref. [145]—and support experiments such as
UCNA at LANL, Nab at the SNS, and PERC in Europe.

For all of these nucleon matrix elements, a goal for the next five years is to pin the values
down to 10–20%. In all cases, such precision is sufficient for the time being. For example,
lattice calculations of this accuracy for the nucleon scalar and tensor charges, combined with
neutron decay, are more sensitive to scalar and tensor contact terms than a 25 fb−1 run at
the 8 TeV LHC [146].

D. Precision Higgs physics: improvements to quark masses and αs

As discussed in Sec. III, lattice QCD plays an important role in determining the basic
parameters of QCD. The single largest source of error in the theoretical calculation of the
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dominant Standard-Model Higgs decay mode H → bb is the parametric uncertainty in the
b-quark mass [147]. Because this mode dominates the total Higgs width, this uncertainty is
also significant for most of the other Higgs branching fractions. Parametric uncertainties in
αs and mc are the largest sources of uncertainty in the partial widths H → gg and H → cc,
respectively. Future high-precision Higgs studies aim at measuring Higgs decay branching
fractions to 1% or better. Since the width to the bb channel is proportional to δm2

b , in order
that parametric uncertainty not dominate the understanding of this channel, δm2

b � 0.5% is
needed. Currently, only LQCD offers a path to accomplishing this. Higgs physics is usually
thought of as an Energy Frontier topic, but the high-precision Higgs studies envisioned here
aim to search for small deviations from Standard-Model expectations. Thus they are more
akin to Intensity Frontier studies than to Energy Frontier discovery studies, and they require
the same type of high-precision LQCD calculations to support them.

The most precise known method for obtaining the quark masses mc and mb from lattice
simulations employs correlation functions of quark currents [17, 148]. Moments of these
correlation functions can easily be calculated nonperturbatively in lattice simulations and
then compared to the perturbative expressions which are known to O(α3

s). Moments the
quark’s electromagnetic current can also be determined from experimental e+e−-annihilation
data as in Ref. [20]. The lattice determination of mMS

c (mc, nf = 4) = 1.273(6) GeV is
currently the most precise in the world [149]; this is primarily because the data for the lattice
correlation functions is much cleaner than the e+e− annihilation data. The uncertainty is
dominated by the estimate of neglected terms ofO(α4

s) in the continuum perturbation theory.
Therefore only modest improvements can be expected without a higher-order perturbative
calculation.

The result for the b-quark mass obtained in this way ismMS
b (mb, nf = 5) = 4.164(23) GeV [17],

and is not currently as precise as the results from e+e− annihilation [20, 149]. The sources
of systematic uncertainty are completely different than for mc. In this case, perturbative
uncertainties are tiny because αs(mb)

4 � αs(mc)
4, and discretization errors dominate the

current uncertainty, followed by statistical errors. These should be straightforward to reduce
by brute force computing power, and so are likely to come down by a factor of two in the
next few years, perhaps to δmb ∼ 0.011 GeV or better. Precision of that order for mb have
already been claimed from e+e− data from reanalysis of the data and perturbation theory
of Ref. [20], and coming lattice calculations will be able to check these using the computing
power expected in the next few years.

The strong coupling constant, αs, is also an output of these lattice calculations, and a
very precise value of αs(MZ , nf = 5) = 0.1183(7) has been obtained in Ref. [17], with an
uncertainty dominated by continuum perturbation theory. Unlike the heavy-quark masses,
for which the correlation function methods give the most precise results at present, there are
numerous good ways of obtaining αs with lattice methods [149]. Several other quantities have
been used to make good determinations of αs with LQCD , including Wilson loops [17], the
Adler function [16], the Schrödinger functional [15], and the ghost-gluon vertex [150]. All of
the lattice determinations are consistent, and each is individually more precise than the most
precise determination that does not use LQCD . The most precise current determination
of αs may improve only modestly over the next few years, since its error is dominated by
perturbation theory. However, the robustness of the global determination should improve
as the precisions of the currently less precise determinations improve.

Lattice-QCD calculations have already determined the quark masses mc and mb and the
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strong coupling αs more precisely than is currently being assumed in discussions of Higgs
decay channels [147]. The current uncertainties in αs, mc, and mb from LQCD are all
currently around a half a per cent and the results, especially for mb, will continue to improve.
For all of these quantities, increased corroboration from independent lattice calculations is
expected in the next few years, making the determinations very robust. If the future lattice
error on αs is reduced by ∼ 30% to ±0.0004, and that on mb is reduced by a factor of two
to ±0.011 GeV, and these uncertainties are used in the Standard-Model Higgs predictions,
then the parametric (total) uncertainty on Γ(H → bb̄) would be reduced to 0.8% (2.8%).

V. RESOURCES FOR STUDIES AT THE INTENSITY FRONTIER

In this section we discuss the computational resources needed to reach the scientific goals set
out above. At present, members of USQCD are making use of dedicated hardware funded by
the DOE through the LQCD-ext Computing Project, as well as a Cray XE/XK computer,
and IBM Blue Gene/Q and Blue Gene/P computers, made available by the DOE’s INCITE
Program. During 2013, USQCD, as a whole, expects to sustain approximately 300 teraflop/s
on these machines. USQCD has a PRAC grant for the development of code for the NSF’s
petascale computing facility, Blue Waters, and expects to obtain a significant allocation
on this computer during 2013. Subgroups within USQCD also make use of computing
facilities at the DOE’s National Energy Research Scientific Computing Center (NERSC),
the Lawrence Livermore National Laboratory (LLNL), and centers supported by the NSF’s
XSEDE Program. In addition, RBC Collaboration, has access to dedicated Blue Gene/Q
computers at Brookhaven National Laboratory and the University of Edinburgh. For some
time, the resources we have obtained have grown with a doubling time of approximately
1.5 years, consistent with Moore’s law, and this growth rate will need to continue if we are
to meet our scientific objectives. The software developed by USQCD under our SciDAC
grant enables us to use a wide variety of architectures with very high efficiency, and it is
critical that our software efforts continue at their current pace. Over time, the development
of new algorithms has had at least as important an impact on our field as advances in
hardware, and we expect this trend to continue, although the rate of algorithmic advances
is not as smooth or easy to predict as that of hardware.

Lattice QCD calculations proceed in two steps. In the first, one performs Monte Carlo
calculations to generate gauge field configurations with probability proportional to their
weight in the Feynman path integrals of QCD. These configurations are saved, and in the
second step of the calculations they are used to determine a variety of physical quantities.
In order to obtain continuum QCD from lattice gauge theory, it is necessary to perform
calculations at a variety of lattice spacings, and perform extrapolations to the limit of zero
lattice spacing. Moreover, the computational resources required for the simulations increase
as the masses of the quarks, the fundamental matter particles in QCD, decrease. Until
recently it has not been possible to perform simulations with the two lightest quarks, the up
and the down, at their physical masses. Instead, one carried out calculations with a range
of heavier than physical up and down quark masses, and performed extrapolations to their
physical values (chiral extrapolation). Supercomputers that have recently become available
to lattice gauge theorists, such as the Blue Gene/Q and the Cray XE/XK are for the first
time enabling us to carry out simulations with physical up and down quark masses at small
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lattice spacings. This development will enable major advances on a range of important
calculations.

Several different formulations of quarks on the lattice are currently in use by lattice gauge
theorists. In our work at the intensity frontier, members of USQCD are currently focused
on two of these: domain-wall fermions (DWF) [40, 41, 151], and highly improved staggered
quarks (HISQ) [39]. Each of these formulations has its own advantages. Furthermore, in
attempting to perform calculations with the precision at which we aim, it is very useful to
employ more than one lattice formulation for at least some of the work in order to make cer-
tain that systematic errors are truly under control. We therefore discuss the computational
resources needed for our calculations with both the DWF and HISQ actions in turn. In both
cases we report the estimate of the total resource required in teraflop/s-years (TF years);
one TF year is defined to be the number of floating point operations produced in a year by
a computer sustaining one teraflop/s.

A. DWF resource requirements

1. Ensemble generation

Many quantities important to a search for physics beyond the standard model at the intensity
frontier require accurate control of chiral symmetry to suppress unphysical operator mixing
or to replicate the chiral structure of the standard model. Over the past fifteen years, the
RBC collaboration, a subgroup of USQCD, together with their collaborators in the UK
have developed the DWF formulation into a well understood tool, capable of accurately
reproducing the chiral symmetries of QCD in a lattice calculation and allowing the physics
of the up, down and strange quarks to be studied with percent level precision. The next
generation of these calculations is now underway using physical values for the quark masses
and (6 fm)3 lattice volumes. Present ensemble generation is focused on lattice spacings
of 0.11 and 0.086 fm, requiring lattice volumes of 483 × 96 and 643 × 128. These are
listed as ensembles #1 and #2 in Table II. We anticipate completion of ensembles #1 and
#2 by 2015 using resources at Argonne National Laboratory (ANL) and the University of
Edinburgh. Shown as ensemble #3 in Table II is a less demanding, prototype, 323 × 64
ensemble generated at stronger coupling with G parity boundary conditions and somewhat
smaller physical volume, but with larger statistics, that will be used to calculate K → ππ
decay into the I = 0 channel, the KL-KS mass difference ∆MK , and certain rare kaon
decays as discussed below. Similar small-volume ensembles at a sequence of decreasing
lattice spacings will allow accurate nonperturbative matching between operators normalized
at the µ ≤ 3 GeV scale accessible on ensembles #1 and #2 and those renormalized at
5–10 GeV where the errors in continuum QCD perturbation theory become increasingly
controlled. It is likely that some of these specialized ensembles will also include a dynamical
charm quark to provide nonperturbative information for matching renormalization factors
between 2+1 and 2+1+1 flavor theories. These smaller ensembles will be generated using
a combination of USQCD, RBRC and Edinburgh BG/Q computers in addition to INCITE
resources. The next two ensembles, #4 and #5 listed in Table II, have parameters identical
to #1 and #2, however electromagnetic effects have been included when generating the
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TABLE II. Ensembles of gauge configurations to be generated with the domain wall (or related

Möbius) fermion action. All ensembles with the exception of #3 have a physical extent of ≈ 6 fm

in the spatial direction and ≈ 12 fm in the time direction. All have physical values for the quark

masses. (Ensemble #3 has a spatial extent of 4.6 fm.) The number of floating point operations

required to generate each ensemble is given in TF years in the final column. These estimates are

based on current algorithms and methods and are thus may well turn out to be conservative in the

light of future advances in technique. For reference, in one year a single BG/Q rack provides for

such a calculation 50 TF years while the leadership class machines at LLNL and ANL contain 96

and 48 such racks respectively.

No. Nf a (fm) N3
s ×Nt Time units TF years

#1 2+1 0.110 483 × 96 5,000 175

#2 2+1 0.086 643 × 128 5,000 390

#3 2+1 0.144 323 × 64 10,000 44

#4 2+1+QED 0.110 483 × 96 5,000 265

#5 2+1+QED 0.086 643 × 128 5,000 585

#6 2+1 0.065 963 × 192 3,000 1,400

#7 2+1+1 0.065 963 × 192 3,000 1,400

#8 2+1+1 0.049 1283 × 256 3,000 5,700

ensembles. Following the exploratory calculations on ensemble #3 with G parity boundary
conditions, we anticipate generating a third pair of ensembles, similar to #1 and #2 but with
G parity boundary conditions. These are not listed in Table II but would require twice the
resources of #1 and #2 and, if warranted by the 323× 64 studies, would be used to increase
the precision of the calculation of ε′/ε, ∆MK and certain rare kaon decay predictions to the
few percent level. Ensembles #6 and #7 in Table II have a smaller lattice spacing of 0.065
fm and are generated without and with a dynamical charm quark. The 2+1 flavor ensemble
will provide a third lattice spacing, giving increased control of the continuum limit. It will
also be critical to exploring the effects of charm quarks in kaon decay. If tests on smaller,
less costly lattice volumes and further theoretical work indicate potentially important effects
from charm quark loops, then a similar 2+1+1 flavor ensemble, #7, will also be generated.
Finally, ensemble #8 also incorporates four flavors of quarks but at a second smaller 0.049
fm lattice spacing, allowing a continuum limit to be evaluated which includes the effects of
dynamical charm quarks. (Even without dynamical charm quarks, a fourth ensemble with
a = 0.049 fm would be needed to evaluate the continuum limit of results which include
a valence charm quark.) These 963 × 192 and 1283 × 256 chiral fermion ensembles, #6,
#7 and #8, are too demanding to be generated with resources available today. They also
require the development of evolution algorithms which remain ergodic at these small gauge
couplings, a topic of active current research. However, we anticipate that these ensembles
will be within the reach of the next generation of HPC machines with peak speeds of a few
hundred petaflop/s, expected in 2016.
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2. “Measurements”

A second critical topic when evaluating resource requirements is the increasing cost of cal-
culating the multiple propagators and their contractions on these large lattice volumes with
light quark masses, what are referred to a lattice QCD “measurements”. The computa-
tional cost of these measurements increases dramatically for calculation with physical quark
masses for two reasons. The first is the familiar difficulty that comes from working with
large lattice volumes and inverting a Dirac operator whose condition number increases as
1/mquark. The second is less familiar. For physical values of the up and down quark masses
the kaon is composed of quarks with very different masses. This results in a kaon propaga-
tor which shows exponentially growing statistical fluctuations at increasing time separations,
presenting noise which lies in severity between the nearly noise-free pion propagator and the
extremely noisy propagator for the nucleon. These difficulties have spawned substantial
advances in computational technique which are now dramatically changing the way these
measurements are performed. Two recently developed strategies are effective for calcula-
tions with chiral fermions. The first, referred to as deflation, requires the calculation of
a large number of eigenvectors with eigenvalues ≤ 100 MeV. At least 600 are needed for
measurements on ensemble #1. The cost of this calculation can be amortized if many prop-
agators are evaluated using the same set of low modes. The eigCG deflation algorithm [152]
typically does this well. The second method, called all-mode-averaging (AMA) [89], uses
inexpensive, approximate inversions, (typically with a conjugate gradient stopping condition
between 10−3 and 10−4) combined with a “fix-up” step which calculates a small correction
for a subset of the measurements that can be applied to give an exact result. When applied
to a challenging quantity such as a q2 = 0, Kl3 form factor, these techniques show as much
as a twenty-fold increase in efficiency. For example, we estimate that a combined calculation
of mπ, mK , fπ, fK , Kl3 and A2 (the amplitude for kaon decay into the I = 2, ππ state) on
100 configurations from ensemble #1 will require 55 TF years and yield the form factors in
a calculation of Kl3 with . 0.3% statistical errors. Such a calculation using deflation and
AMA requires individual jobs which run for four days on one BG/Q rack, using the full
16 terabytes of machine memory. This example suggests that a full suite of calculations,
possibly including those for ε′/ε, ∆MK and rare kaon decays, may require resources that are
in balance with those listed in Table II that are needed to generate the ensembles. However,
these efficiencies can be realized only on leadership class machines where tens of sustained
teraflop/s and tens of Terabytes of memory can be provided for a single job.

B. HISQ resource requirements

The MILC Collaboration, a subgroup of USQCD, is using the HISQ action to generate an
extensive library of gauge configurations with four flavors of sea quarks: up, down, strange
and charm. Like the ensembles generated earlier by this group with three flavors of improved
staggered (asqtad [153, 154]) quarks [19], the HISQ ensembles are being made publicly
available. They and the asqtad ensembles are being used by members of USQCD and others
for a wide range of studies including precise calculations of standard model parameters, such
as the gauge coupling constant and quark masses, and the weak interaction matrix elements
needed for the determination of CKM matrix elements and tests of the standard model,
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listed in Table I.

In the first phase of the HISQ configuration generation project, ensembles are being gener-
ated with four values of the lattice spacing in the range a ≈ 0.15 fm to 0.06 fm in order to
enable extrapolations to the continuum limit. At each of these lattice spacings, ensembles
are being created with three values of the light quark mass, ml = (mu+md)/2, including the
physical value. (Here mu and md are the masses of the the up and down quarks). For these
ensembles, the masses of the up and down quarks are taken to be equal, which has an effect
of less than 1% on isospin averaged quantities, and the strange and charm quark masses are
fixed at their physical values. All of the Phase 1 ensembles have been completed, or are
nearing completion, except the one with a ≈ 0.06 fm and physical quark masses. This is the
most challenging staggered quark simulation undertaken to date, and it is only the advent
of petascale computers, that make it feasible. We hope to complete this ensemble within the
coming year, and then move on to ones with lattice spacings a ≈ 0.045 fm and 0.03 fm in
the future. These very fine grained ensembles will significantly increase the precision of all
calculations performed with HISQ gauge configurations, and will have a particularly large
impact on studies of b-physics, because they will, for the first time, enable use of staggered
b-quarks. Until recently, b-quarks have been simulated using the Fermilab formulation of
heavy quarks [155] or the nonrelativistic formulation of QCD (NRQCD) [156], both of which
have leading lattice artifacts of order O(a), whereas the asqtad and HISQ formulations have
leading artifacts of order O(a2). However, we can only use HISQ valence quarks for lattice
spacings such that amb < 1, which is reached at a ≈ 0.03 fm.

The masses and leptonic decay constants of light pseudoscalar mesons (π, K, D and Ds)
are measured as the configurations are produced. These quantities are important in their
own right, and they are used to monitor the runs and to determine the lattice spacing
and sea-quark masses of the ensembles. The lattice spacing and sea-quark masses can
only be estimated prior to the simulation. They are determined precisely through these
measurement, which therefore impact all calculations performed with the configurations.

The resources required to generate HISQ gauge configurations with physical light, strange
and charm quark masses, ml, ms and mc, respectively, and to perform the pseudoscalar
measurements, can be determined from our current runs with a ≈ 0.06 fm, and the known
scaling properties of our algorithms with lattice spacing, light-quark mass and lattice volume.
They are given in the first three rows of Table III. These ensembles, like most generated
earlier with the HISQ action have mu = md. Ensembles with a heavier than physical value
of ml are also useful, but require a small fraction of the resources of the physical mass ones.
Resources for ensembles with mu and md fixed at their physical values, mu/md ≈ 0.44, are
also shown in Table III. Those in rows four and five, like the mu = md ensembles, do not
include the electromagnetic field, while those in rows six and seven do. As indicated above,
configuration generation requires the most capable available supercomputers, whereas the
pseudoscalar measurements, and a number of other measurement routines, can be run on
large clusters with GPU accelerators, as well as on supercomputers.

In recent years, the resources spent on measurements other than the pseudoscalar ones
described above, have been approximately four times those required to generate the con-
figurations. This figure is growing in part because of the increasing sophistication of the
measurements, and in part because of the expanding number of questions that can now be
profitably addressed. The overwhelming fraction of resources for measurement routines go
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TABLE III. Resources to generate gauge configuration ensembles with four flavors of HISQ quarks.

The first column give the number of quark flavors with the notation 2+1+1 indicating that the

masses of the up and down quarks are equal, and 1+1+1+1 that all four quark masses are unequal.

The second column give the lattice spacing in fm, and the third column the ratio of up to down

quark masses. In all ensembles, ml, ms, and mc take on their physical values, whereas in the four

with mu/md ≈ 0.44, the up and down quark masses are at their physical values as well. The fourth

column gives the lattice dimensions, which are adjusted so that the spatial size of each box is fixed

at 5.76 fm, and the temporal size at 11.52 fm. The fifth column gives the resources in TF tears to

generate 6,000 molecular dynamics time units (1,000 equilibrated gauge configurations) for each

ensemble, and the sixth column the resources to measure the properties of pseudoscalar mesons

on these ensembles. These estimates are based on current algorithms and methods and are thus

conservative.

Nf a mu/md N3
s ×Nt Configuration Pseudoscalars

(fm) generation measurements
(TF years) (TF years)

2+1+1 0.060 1.00 963 × 192 14 24

2+1+1 0.045 1.00 1283 × 256 72 100

2+1+1 0.030 1.00 1923 × 384 650 760

1+1+1+1 0.060 0.44 963 × 192 22 39

1+1+1+1 0.045 0.44 1283 × 256 120 160

1+1+1+1+QED 0.060 0.44 963 × 192 32 56

1+1+1+1+QED 0.045 0.44 1283 × 256 170 240

into the inversion of the Dirac operator. Work is in progress on improved algorithms for
this portion of the calculation, which could lead to a significant expansion in the scope of
the physics that can be done with the HISQ ensembles. With present algorithms, we can
generate the a ≈ 0.06 fm and and 0.045 fm ensembles, and carry out a robust research
program with them over the next three years, including work on all of the quantities listed
in Table I. The a ≈ 0.03 fm, physical quark mass ensemble will require the next generation
of supercomputers expected in 2016.

VI. SUMMARY

Lattice QCD calculations now play an essential role in the search for new physics at the
intensity frontier. They provide accurate results for many of the hadronic matrix elements
needed to realize the potential of present experiments probing the physics of flavor. The
methodology has been validated by comparison with a broad array of measured quantities,
several of which had not been well measured in experiment when the first good lattice
calculation became available. In the US, this effort has been supported in an essential way
by hardware and software support provided to the USQCD Collaboration.

This document has laid out an ambitious five year vision for future LQCD calculations,
explaining how they can provide essential and timely information for upcoming experiments
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to test the Standard Model and search for physics beyond at the intensity, energy, and cosmic
frontiers, by undertaking calculations of new, more computationally challenging, quantities.
In addition, steady improvements in lattice results for matrix elements which are already
well calculated will ensure that existing experimental results are fully utilized in the search
for new physics. Our plans rely on continuing hardware and software support at similar
levels to those of the last decade.
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Appendix A: Future prospects for standard weak matrix elements

In this Appendix we provide a more detailed discussion of the future prospects for the LQCD
calculation of the “standard” matrix elements. These involve at most a single hadron in
both initial and final states, and are the most advanced of the calculations discussed in this
white paper. Calculations with all errors controlled have been done, in some cases with
several results available using different fermion discretizations, and the challenge now is to
reduce errors so that they drop below those coming from other sources. We explain here
how we expect these errors to be reduced over the next five years, leading to the forecasts
given in Table I.

1. First-row unitarity

Testing first-row unitarity of the CKM matrix requires the LQCD inputs fK/fπ and f+(0)
(the K → π semileptonic form factor at q2 = 0). Present lattice results have achieved∼ 0.5%
errors for both quantities, but this is still considerably larger than the 0.2% experimental
errors. One should keep in mind, however, that these impressive-looking errors are somewhat
misleading since the nontrivial part of the calculations is to obtain the differences from unity.
These differences are ∼ 0.2 and ∼ −0.04, for fK/fπ and f+(0), respectively, so that the
“true” lattice errors are closer to 2.5% and 10%. Seen in this light, the possibility of further
improvement seems quite reasonable.

The ratio fK/fπ has become a benchmark quantity, with consistent results obtained using
asqtad, HISQ, DWF, and Wilson fermions. The present combined average is fK/fπ =
1.1936(53) [28] (0.44% error). This includes a correction from the isospin-limit lattice result
to the physically relevant ratio fK+/fπ+ which is estimated to be −0.4%, i.e. comparable
in size to the total error. Thus further improvement requires a reliable estimate of the error
on this correction, which ultimately may require including isospin-breaking and QED effects
(using the methods discussed in the main text).

The dominant error in the most accurate calculation (that of Ref. [157]), which uses the
asqtad ensemble, comes from the chiral/continuum extrapolation. Presently this is +0.3

−0.6%.
Moving to the presently available HISQ lattices with a ≈ 0.09 and 0.12 fm and physical quark
masses, should significantly reduce this error roughly to the level of the 0.2% statistical error.
This leads to the total error estimate for 2014 of 0.3% given in Table I. Extending to the
full planned HISQ ensemble with a = 0.06 fm physical quarks will reduce both statistical
and systematic errors: we forecast a total error of 0.15% when combined with calculations
using other fermions.

The situation for the K → π semileptonic form factor is less advanced. Until very recently,
there was only one nf = 2 + 1 calculation, using DWF and at a single lattice spacing [158].
There is now a second calculation, Ref. [36], using HISQ valence quarks on asqtad sea and
two lattice spacing (a = 0.09 and 0.12 fm). There is also an nf = 2 result using twisted-mass
fermions with all errors controlled except for the quenching of the strange quark [159]. It is
nevertheless included in world averages because the impact of quenching can be determined
exactly at next-to-leading order (NLO) in chiral perturbation theory. Averaging the DWF
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and twisted-mass calculations, Latticeaverages.org quotes f+(0) = 0.9584(44) [28], for
a 0.46% total error. The very recent HISQ result, f+(0) = 0.9667(40) [36], has a slightly
smaller error.

In the near future the DWF result will be fully controlled by the addition of a second lattice
spacing. Combined with the updated valence HISQ results, an error of 0.35% in 2014 seems
conservative. Before 2018, there should be results using valence and sea HISQ quarks with
physical quark masses. Preliminary results at a = 0.12 fm find a 0.2% statistical error. Given
that most systematic errors will be significantly reduced, as will statistical errors when the
calculation is done on the entire HISQ ensemble, a total error of 0.2% seems attainable.

2. fD and fDs

LQCD results for charmed meson decay constants are important both to provide methods
for determining the CKM elements Vcu and Vcs, which allows a test of unitarity of the second
row, and also as benchmark quantities for lattice calculations using charm quarks.

The LQCD calculations of these decay constants have improved much faster than forecast
in the 2007 white paper. This is mainly due to the use of relativistic (HISQ) charm quarks,
which makes the calculation comparable to that for fK and fπ, and, in particular, fixes
the normalization of the lattice axial currents. The most accurate results use HISQ valence
quarks on asqtad sea, and find [160, 161]

fD = 208.3(1.0)(3.3) MeV , fDs = 246.0(0.7)(3.5) MeV . (A1)

Preliminary results using HISQ valence and sea quarks are in complete agreement [162]. The
errors are slightly smaller than those in the present experimental measurements, and (using
CKM elements from neutrino interactions and unitarity) the central values are consistent.
The “fDs puzzle” of a few years ago has thus disappeared as improved results have appeared
(both experimental and lattice).

Combining the lattice fD with the experimental D+ → µ+ν decay rate now leads to the
most accurate determination of |Vcd|, eclipsing those from semileptonic decays and neutrino
interactions. On the other hand, combining fDs with the Ds leptonic decay rate leads to a
less accurate determination of |Vcs| than that from semileptonic decays (discussed below),
although it provides an important cross check.

Experimental results for these decay constants will continue to improve, and thus it remains
important to reduce lattice errors. These are likely not at the point where isospin breaking
and EM effects in the sea need to be included, although valence isospin breaking is included
in present lattice results. We expect a rough halving of lattice errors by 2014, since the
present calculations will be extended to the full HISQ ensemble (including, in particular,
physical light quarks at a = 0.06 fm). Further improvements beyond 2014 are hard to
forecast in detail.
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3. Semileptonic form factors for D decays

The D → π and D → K semileptonic form factors provide an alternative method for
determining |Vcd| and |Vcs|. As noted already, this method leads, at present, to the most
accurate results for |Vcs|, while leptonic decays give a more accurate result for |Vcd|. Present
experimental errors are significantly smaller than the lattice errors for both form factors (see
Table I), providing strong motivation for improvements in the latter.

There is only one completed nf = 2 + 1 lattice result, using HISQ valence quarks (for light
and charm quarks) on asqtad sea (with a = 0.09 and 0.12 fm) [163, 164]. The results are

fD→π+ (0) = 0.666(20)(21) and fD→K+ (0) = 0.747(11)(15) , (A2)

where errors are statistical and systematic, respectively. Results using “Fermilab” charm
quarks [155] and asqtad light quarks (and with a down to 0.045 fm) are nearing comple-
tion and will have comparable errors [165]. This will provide an important check that the
discretization of the charm quark is unimportant.

Over the next five years, calculations will be extended to the full set of HISQ ensembles, likely
with HISQ valence quarks. Thus by 2018 chiral extrapolation errors should be removed,
discretization errors at least halved (from the use of smaller a), and statistical errors reduced.
We forecast a halving in the total errors by 2018, with intermediate errors at 2014. Thus by
2018 lattice errors should reach the level of (present) experimental errors.

4. Semileptonic B → D(∗) and Bs → Ds form factors

These form factors play an extremely important role in the CKM constraints since they
determine |Vcb|. For example, the constraint from B̂K involves |Vcb|4. Reducing the error in
|Vcb| is also important for other experiments searching for BSM physics (e.g., K → πνν̄) for
which one needs to know the expected SM decay rate with good accuracy.

As shown in Table I, lattice errors are approaching those in present experiments. Never-
theless, given the importance of reducing errors in Vcb, it remains a high priority to further
reduce the lattice errors to a level at or below those in experiments.

Since the experimental error in the B → D∗ form factor is smaller than for B → D, lattice
calculations are presently concentrating on the former. The only nf = 2 + 1 calculation uses
the Fermilab approach for b and c quarks and asqtad light quarks (with a = 0.06, 0.09 and
0.12 fm). Combined with a somewhat old result from HFAG, one finds [28]

|Vcb|excl = 39.7(0.7)expt(0.7)latt × 10−3 . (A3)

This should be compared to the extraction using inclusive b → c semileptonic decays and
using heavy-quark effective theory (HQET), which is [166]

|Vcb|incl = 41.9(0.8) . (A4)
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Thus there is a small (1.7σ) discrepancy between inclusive and exclusive determinations.
This provides further motivation to reduce lattice errors.

In the short term, a mild reduction in errors is possible by extending the calculation to the
a = 0.045 fm lattices, which reduces discretization errors. Leaving other errors unchanged
leads to the reduction from the present 1.8% to 1.5% as quoted in Table I. In the longer term,
using the HISQ ensembles with physical quark masses will removed the chiral extrapolation
error, leading to a total error below 1% (and thus below present experimental errors). In
addition, the calculations are being extended to nonzero recoil [167], allowing comparison
with experiment over a range of recoil momenta rather than just at the zero-recoil point.
This will lead to smaller errors in |Vcb|.

Two recent calculations involving b → c form factors show how LQCD calculations have
responded to new experimental results. For the last few years, experimental results for the
ratio

R(D) =
BR(B → Dτν)

BR(B → D`ν)
, (` = e or µ), (A5)

and the analogous quantity R(D∗), have progressively improved. The best measurements
are from BABAR, who find R(D) = 0.440(58)(42) and R(D∗) = 0.332(24)(18) [47]. These
are, respectively, 2σ and 2.7σ above prior theoretical expectations in the SM. However, these
expectations are not based on a first-principles calculations from QCD, which the lattice can
now provide. The Fermilab-MILC collaboration have recently given the first LQCD result
for R(D) [46].

Since the B → Dτµ decay is not helicity suppressed, it is is sensitive to both the vector
and scalar form factors, f+(q2) and f0(q2). For decays to e and µ, by contrast, only the
vector form factor enters. Thus a prediction for R(D) requires knowledge of both of these
form factors over the entire kinematic range. Although final results are not yet available for
these B → D form factors, the calculation of ratios like R(D) is more straightforward as
many errors are reduced. Using only a subset of the asqtad ensemble, but working over a
range of recoil momenta and using the z expansion, the Fermilab-MILC collaboration find
R(D) = 0.316(12)(7). This reduces the discrepancy with experiment down to 1.7σ.

At present, experimental errors (∼ 16%) dominate over lattice errors (4.3%). In the future,
it is likely that Belle II will reduce the experimental errors, and thus it may be worthwhile
improving the lattice result. A significant improvement is, in fact, straightforward, since by
extending the calculations to the full MILC set of asqtad ensembles, a reduction by 2 in
both statistical and systematic errors seems possible. Thus we expect an error of ∼ 2.5%
by 2014. Errors could be further reduced by moving to the HISQ ensembles. The extension
of the calculation to R(D∗) is also underway.

The second new calculation is of the ratios

R1 = fBs→Ds`ν
0 (M2

π)/fB→D`ν0 (M2
K) and R2 = fBs→Ds`ν

0 (M2
π)/fB→D`ν0 (M2

π) , (A6)

which involve the new form factor Bs → Ds. These ratios are needed as part of an analysis
to determine the ratio of b-quark fragmentation probabilities into Bs versus Bd. This in turn
is needed at a hadronic collider as part of one of the methods used to extract the rate of the
rare decay B0

s → µ+µ−. LHCb has recently obtained first evidence for this decay. Previous
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results for R1 and R2 used QCD sum-rules, and found significant deviations from unity (i.e.
from the U spin limit). The Fermilab-MILC collaboration, using only a subset of the asqtad
ensemble, finds results consistent with U spin [168]:

R1 = 1.046(44)(15) , and R2 = 1.054(47)(17) , (A7)

At present, lattice errors are smaller than those coming from the experiments, but the latter
will likely improve with further running at LHCb. Lattice errors, which are dominated by
statistics at present, should improve substantially by extending the calculation to the full
asqtad ensemble. We expect errors at the ∼ 2% level by 2014.

5. B → π semileptonic form factor

This form factor provides the primary method for determining |Vub|, the constraint on which
plays a crucial role in the unitary triangle fits. LQCD provides results for the form factor
for a range of q2, and compares with experiment using the z expansion. At present, this
determination based on an exclusive b → u decay has a total error of 8.3%, |Vub|excl =
3.12(26) × 10−3, of which the lattice component is about twice that from experiment (see
Table I).

There has been a longstanding discrepancy between this lattice-based result and that using
inclusive decays and HQET: |Vub|incl = 4.40(15)exp(20)th [166]. The discrepancy is about
3.6σ at present. Clearly it is crucial to reduce the lattice errors, both to pin down |Vub| more
accurately, and to determine if the inclusive-exclusive difference is real.

There are at present two nf = 2 + 1 calculations, both using the asqtad configurations
with a = 0.09 and 0.12 fm, but differing in their treatment of the b quark. The HPQCD
collaboration uses NRQCD [169], while the Fermilab-MILC collaboration uses the Fermilab
approach [125]. The errors in the two calculations are comparable. Since these calculations
are 4–6 years old, significant improvement is possible in the near term. Extending to the full
asqtad ensemble will reduce statistical, chiral extrapolation and discretization errors, and a
4% total error in 2014 should be possible. This will match the present experimental error.
In the longer term, extending the calculation to the HISQ ensembles with physical quark
masses will plausibly reduce errors by another factor of 2.

There will also be results available in the next year or two using other methods: nonpertur-
batively tuned relativistic heavy quarks [49, 50] with DWF for the light quarks [51] and a
lattice-HQET treatment [170].

HPQCD is also calculating related form-factors [171], in particular the Bs → K`ν form
factor which, combined with upcoming LHCb results, provides an alternative method to
determine Vub.

6. B-meson decay constants

fB and fBs have long been benchmark quantities for LQCD calculations involving b-quarks.
Indeed, several different methods for simulating the b-quark lead to consistent results, pro-
viding important validation of LQCD. In recent years, however, the decay constants have also
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become important phenomenologically, determining |Vub| from the leptonic decay B → τν,
and solidifying the SM prediction for the recently measured decay Bs → µ+µ−, a process
which is very sensitive to new physics.

Combining nf = 2+1 results from HPQCD [48, 172] and Fermilab-MILC [173], one finds [28]

fB = 190.6(4.7)MeV , fBs = 227.6(5.0)MeV , fBs/fB = 1.201(17) , (A8)

which have errors of 2.5%, 2.2% and 1.4%, respectively. These errors should be compared
to that in the experimental result for

√
Γ(B → τν), which is ∼ 9% [166]. Thus, for this

quantity, lattice calculations are likely to have smaller errors than experiment for some
time to come. Note that the situation is reversed compared to the primary method for
determining |Vub|, the B → π form factor, where it is the lattice errors which are ∼ 9%, and
larger than experimental errors.

Nevertheless, further improvements would be welcome for several reasons: (i) experiment
errors in Γ(B → τν) will improve; (ii) it is important to further reduce the errors in the
SM prediction for Bs → µ+µ−; and (iii) because of the use of the decay constants as
benchmarks for lattice calculations using b-quarks. Extending present calculations to the
HISQ ensembles, including those at physical quark masses and a = 0.06 fm (or smaller),
should allow gradual improvement down to the 1% level by 2018. In addition, calculations
using the “ratio method” and relativistic twisted-mass quarks are underway [174], as are
those using nonperturbatively tuned relativistic heavy quarks and light DWF [51], and using
lattice HQET including 1/mb corrections [175].

7. B-meson mixing matrix elements

B-meson mixing is now measured very accurately, with errors of 0.8% and 0.24% in ∆Md

and ∆Ms, respectively [166]. The lattice matrix elements needed to use these results are
for f 2

BBB and f 2
Bs
BBs , respectively. The smallest lattice errors result if one connects to

experiment using ξ = fBs

√
BBs/(fB

√
BB) ∝

√
∆Ms/∆Md (for which the experimental

error is 0.4%) and f 2
Bs
BBs ∝ ∆Ms. These two results play a very important role in the

unitarity triangle constraint (see Fig. 3).

The required lattice matrix elements involve four-fermion operators, which are more compli-
cated to calculate than most of the bilinear matrix elements discussed earlier in this section.
Present nf = 2 + 1 LQCD calculations are from HPQCD [176] and Fermilab-MILC [177],
both using part of the asqtad ensembles (a = 0.09 and 0.12 fm), but differing in the choice of
lattice b-quark (NRQCD for HPQCD and Fermilab formulation for Fermilab-MILC). They
lead to a combined error of ∼ 4% in ξ (adapted from Ref. [28] by the addition of an error
due to “wrong taste-spin” operators [177]) and 11% in f 2

Bs
BBs [28].

Thus there remains considerable room for improvement in the lattice calculations. Wrong
taste-spin operators can be removed by fitting simultaneously to matrix elements of several
four-fermion operators. The other dominant errors are from statistics, discretization, rela-
tivistic corrections (for NRQCD) and chiral extrapolation, all of which can be reduced by
moving to the entire MILC asqtad ensemble. We estimate a combined error of 1.5% in ξ and
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8% in f 2
Bs
BBs in 2014. Moving to the HISQ ensemble, incorporating extrapolations from

relativistic b quarks, and introducing other methods as for the decay constants, we forecast
errors of < 1% and 5%, respectively, by 2018.

8. The kaon B parameter, B̂K

The final standard matrix element is B̂K . This describes the (dominant) short-distance
part of CP violation in K-K̄ mixing, and, plays an important, and complementary, role in
the unitarity fits, as shown in Fig. 3. In the last five years, the lattice error has improved
dramatically (far better than the 2007 forecast) due to a worldwide effort involving multiple

types of fermions. The combined result is presently B̂K = 0.7643(97) [28], with a total error
of 1.3%. This combines nf = 2 + 1 results with improved Wilson valence and sea [178] (the
most accurate result to date), DWF valence and sea [179, 180], DWF valence on asqtad
sea [181], and improved staggered on asqtad sea [182] (with the last three being done under
USQCD auspices).

It is difficult to give an appropriate experimental error with which to compare the lattice
error. On the one hand, the measurement of the quantity to which B̂K contributes, namely
CP violation in kaon mixing (εK), has an error of 0.5%. This is the number appearing in
Table I, and should be the ultimate goal of lattice calculations.

On the other hand, there are other errors which enter into the connection between B̂K and εK
which are, at present, larger than that in B̂K . These are the perturbative truncation errors in
Wilson coefficients (in particular in η1, the “charm-charm” coefficient) and the uncertainty
in the long-distance contribution. In addition, to use BK in the unitarity triangle fits (i.e.
placing constraints on ρ and η) one needs |V 4

cb|, the present error in which is larger than any

of the errors described above. The situation is illustrated by the prediction for B̂K obtained
by performing the unitarity triangle fit without including the LQCD input for B̂K . The
UTFIT web site quotes this as B̂K = 0.85(9). Thus a lattice error � 10% is sufficient at
present for the unitarity fit, a level of accuracy which has clearly been achieved.

Thus, in the short run, the BK calculation is in very good shape. In the long run, however,
it is worthwhile continuing to improve the calculation, as well as using it as a benchmark
quantity for future lattice methods. The future forecasts in Table I are rather conservative
(1% in 2014, from incremental improvements, and < 1% in 2018).

Appendix B: Future prospects for more challenging LQCD calculations

As described in the main text, advances in lattice methods and computational resources
will allow the calculation of several new kaon properties over the next five years. In this
Appendix we provide more technical details concerning likely progress.
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1. K → ππ amplitudes

For these amplitudes, The final state pions must have nonvanishing relative momenta so
that their energy matches that of the initial kaon. For the I = 2 amplitude, A2, this
can be achieved using appropriate boundary conditions on the valence quarks. It is also
straightforward to work out the small (6%) finite volume (Lellouch-Lüscher) correction on
the normalization of this state. Overall, the error is 15% [30, 31]. source of uncertainty comes
from potentially large O(a2) errors since a single, rather large lattice spacing (1/a = 1.36
GeV) is used.

The error can be systematically reduced using smaller lattice spacings. A new calculation
at 1/a = 1.73 GeV using the Iwasaki gauge action has just begun with results expected in
a year. A follow-up calculation with the same gauge action and a still finer lattice spacing
(1/a = 2.28 GeV) will follow and yield ≈ 5% error within perhaps two years. This would
bring the result to the level at which the effects of isospin violation on the larger amplitude
A0 must be included.

The calculation of A0 is much more difficult because of the overlap between the I = 0 ππ
state and the vacuum, resulting in disconnected diagrams and a noise to signal ratio that
grows exponentially with time. In addition, the simple boundary conditions used to give the
ground state pions the necessary relative momentum cannot be used for I = 0, and G-parity
boundary condition must be employed and imposed on both the valence and sea quarks.
These topics have been actively pursued for a number of years and trial calculations carried
out [70] to determine the best methods to suppress coupling to the vacuum. More than a
factor of 10 improvement in statistics has been achieved and nonzero signals for both ReA0

and ImA0 have been observed for K → (ππ)I=0 at threshold. Code has been written to
generate 2+1 flavor gauge ensembles with G-parity boundary conditions [183]. However, a
few more months of testing and additional coding effort are needed before the first full-QCD
G-parity tests can be carried out. The first results for A0 are expected within two years
from a relatively coarse, 323 × 64 ensemble for an energy conserving decay with physical
pion and kaon masses. Errors on ε′ on the order of 15% will be achieved, with the dominant
error coming from the finite lattice spacing. As in the case of the easier A2 calculation,
lessons learned from this first, physical calculation will then be applied to calculations using
a pair of ensembles with two lattice spacings so that a continuum limit can be obtained.
This second phase of the ε′ calculation is less certain, requiring both success with the first,
coarse lattice simulation and substantial additional resources beyond those listed in Table II.
Ensembles #1 and #2 in Table II must be regenerated with G-parity boundary conditions
imposed in all three spatial directions at twice the cost listed in Table II (since now the u
and d quarks must be simulated independently). With some good fortune, this second phase
of the calculation might be completed in five years and achieve errors on the 10% level. Here
the largest source of systematic uncertainty arises from using 2+1 flavors and treating the
charm quark using perturbation theory. Solutions to this problem which require using a still
smaller lattice spacing and new methods to overcome the loss of ergodicity are now being
actively studied. It is possible that only nonperturbative operator renormalization which
explicitly includes the charm quark will be needed, in which case these charm quark effects
will likely be incorporated within three years.
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2. Long-distance contributions to ∆MK

Promising techniques have been developed which allow the calculation of the long-distance
contribution to ∆MK by lattice methods. By evaluating a four-point function including
operators which create and destroy the initial and final kaon and two effective weak four-
quark operators, the required second order amplitude can be explicitly evaluated. Integrating
the space-time positions of the two weak operators over a region of fixed time extent T and
extracting the coefficient of the term which grows linearly with T gives precisely ∆MK .
Three problems must be overcome. First, the four-point function above includes terms
which grow exponentially with T which must be subtracted. The statistical noise remaining
after this subtraction gives even the connected diagrams the large-noise problems typical
of disconnected diagrams. Preliminary results suggest that this problem can be solved by
variance reduction methods and large statistics [73]. Second, finite volume effects must be
removed by a careful treatment of intermediate ππ states degenerate with the kaon. This may
not be difficult but has been inaccessible to the numerical experiments performed to date.
Third, given the central importance of GIM cancellation in ∆MK , a lattice calculation that is
not burdened by multiple subtractions must include the charm quark mass. While apparently
sensible results can be obtained even with mca = 0.7, believable systematic errors will require
significantly smaller lattice spacing and an explicit continuum limit—a substantial challenge
for a calculation which should also contain physical pions in a appropriately large physical
volume. Perturbative results [64, 65] as well as the first lattice calculation [73] suggest
that QCD perturbation theory works poorly at the energies as low as the charm mass,
making the incorporation of charm in a lattice calculation a high priority here, as it is for
the quantity Im(A0) entering ε′ discussed above. Present results suggest that the first and
second difficulties may be overcome in the next 2–3 years with the program outlined in this
white paper, yielding results with all errors except those related to mca effects controlled
at the 10% level. Proper control of charm mass discretization errors may require the next
generation of HPC machines and be five years away.

3. Long distance contributions to εK

The indirect CP violation parameter εK is closely related to ∆MK discussed above, being
essentially the imaginary part of the amplitude whose real part is ∆MK . However, while
∆MK is dominated by the contributions of u and c up-type quarks, even the long distance
contribution to εK comes from amplitudes which contain u, c and t up-type quarks. Without
the double GIM cancellation that makes the lattice calculation of ∆MK convergent, the long
distance part of εK will contain pieces of the form ln(mcharma). These can be subtracted by
standard Rome-Southampton techniques [73, 184] and replaced by quantities that can be
computed accurately in perturbation theory, provided the subtraction energy is sufficiently
large. While preliminary studies [71] suggest that such subtractions can be carried out
successfully, the calculation of the≈ 5% long distance contribution to εK contains ingredients
that are not present in ∆MK . Thus, we believe it prudent to begin a calculation of the long
distance part of εK after a realistic calculation of ∆MK with 10% discretization errors has
been completed, unless results in other areas increase the urgency with which a more accurate
value of εK is needed.
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4. Rare kaon decays

Given the promise of the first calculations of the long distance contributions to ∆MK , a
process that involves two W± exchanges, it is natural to consider similar calculations for
the second-order processes which enter important rare kaon decays such as K0

L → π0`+`− or
K+ → π+νν. While in principle KL → `+`− should also be accessible to lattice methods, the
appearance of three electroweak, hadronic vertices suggests that this and similar processes
involving H∆S=1

W and two photons should be tackled only after success has been achieved
with more accessible, second order processes.

The processes K+ → π+νν and KL → π0νν may be the most straightforward generalization
of the current ∆MK calculation. Here the dominant contribution comes from box and Z-
penguin diagrams involving top quarks but with a 30% component of the CP -conserving
process coming from the charm quark [185]. While the charm quark piece is traditionally
referred to as “short distance”, the experience with ∆MK described above suggest that a
perturbative evaluation of this charm quark contribution may be unreliable and a lattice
calculation, similar to that described for ∆MK , may be essential if a 10% test of the standard
model is to be performed. Given the on-going NA62 and KOTO experiments at CERN and
J-PARC, this calculation might be given higher priority than the similar study of the long-
distance contribution to εK .

The long distance contributions to the decay KL/S → π0`+`− also appear to be a natural
target for a lattice QCD calculation.3 Here the CP -violating decay KL → π0e+e− may be
of greatest interest and lattice QCD may provide a more accurate result, including the sign,
for the indirect contribution by computing the CP -conserving process KS → π0`+`−. While
a similar approach to KL → π0µ+µ− could also be carried out, the results may be of less
significance because of a two-photon, CP -conserving contribution which may be difficult to
accurately estimate and is a more distant target for lattice QCD.

It should be emphasized that while USQCD and its UK collaborators have the human and
computational resources to pursue this rare kaon decay topic, serious research has not yet
begun so this discussion is necessarily preliminary and incomplete. We expect to begin pilot
calculations within the coming year.

3 See recent talk of Chris Sachrajda [186].
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[42] M. Lüscher, S. Sint, R. Sommer, P. Weisz, and U. Wolff, Nucl. Phys. B491, 323 (1997),

arXiv:hep-lat/9609035 [hep-lat].
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[62] L. Lellouch and M. Lüscher, Commun. Math. Phys. 219, 31 (2001), hep-lat/0003023.

[63] A. J. Buras, D. Guadagnoli, and G. Isidori, Phys. Lett. B688, 309 (2010), arXiv:1002.3612

[hep-ph].

[64] S. Herrlich and U. Nierste, Nucl. Phys. B419, 292 (1994), arXiv:hep-ph/9310311.

[65] J. Brod and M. Gorbahn, Phys. Rev. D82, 094026 (2010), arXiv:1007.0684 [hep-ph].

[66] N. H. Christ (RBC and UKQCD), PoS LATTICE2010, 300 (2010), arXiv:1012.6034 [hep-

lat].

[67] N. H. Christ (RBC and UKQCD), PoS LATTICE2011, 277 (2011), arXiv:1201.2065 [hep-

lat].

[68] M. Bauer, S. Casagrande, U. Haisch, and M. Neubert, JHEP 1009, 017 (2010),

arXiv:0912.1625 [hep-ph].

[69] U. Haisch (Fermilab, June 14-23, 2012) talk at Project X Physics Study.

[70] T. Blum et al. (RBC and UKQCD), Phys. Rev. D84, 114503 (2011), arXiv:1106.2714 [hep-

lat].

[71] J. Yu, PoS LATTICE2011, 297 (2011), arXiv:1111.6953 [hep-lat].

[72] J. Yu (RBC and UKQCD), PoS LAT2012, 129 (2012).

[73] N. H. Christ, T. Izubuchi, C. T. Sachrajda, A. Soni, and J. Yu (RBC and UKQCD), (2012),

arXiv:1212.5931 [hep-lat].

[74] M. T. Hansen and S. R. Sharpe, Phys. Rev. D86, 016007 (2012), arXiv:1204.0826 [hep-lat].

[75] V. M. Braun et al. (QCDSF), Phys. Rev. D74, 074501 (2006), arXiv:hep-lat/0606012 [hep-

lat].

[76] R. Arthur et al. (RBC and UKQCD), Phys. Rev. D83, 074505 (2011), arXiv:1011.5906 [hep-

lat].

[77] T. Aoyama, M. Hayakawa, T. Kinoshita, and M. Nio, Phys. Rev. Lett. 109, 111808 (2012),

arXiv:1205.5370 [hep-ph].
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