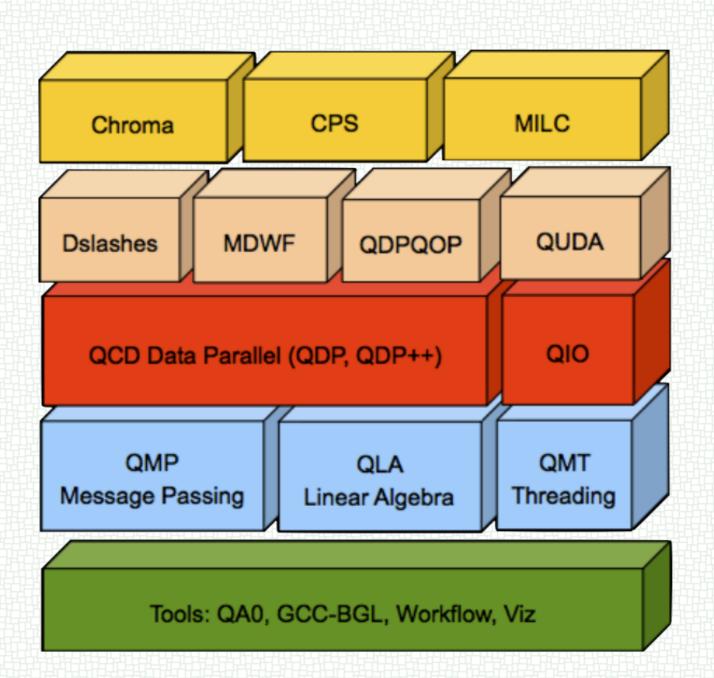
QLUA

Andrew Pochinsky

MIT

The overarching goal is to develop a platform-independent computational platform for lattice QCD that makes efficient use of both computational scientist's time and evolving hardware on the path to exascale


LATTICE QCD

$$\langle \mathcal{O} \rangle = \int [\mathcal{D}U] \det M[U] \exp(-S_F[U]) O[U]$$

$$O[U] = \sum P(U)(M^{-1})_{ij} \dots$$

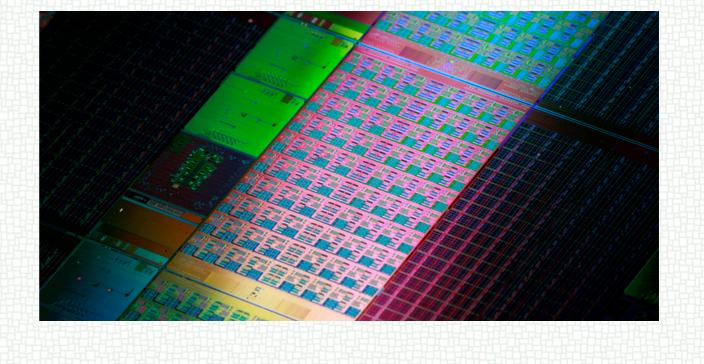
$$p[U] = \det M[U] \exp(-S_F[U])$$

USQCD SOFTWARE

HPC HARDWARE

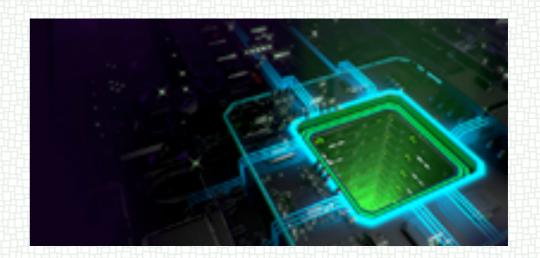
IBM: BLUE GENE

- ☐ /L,/P,/Q,...
- I short vector FPU
- ☐ multiple cores
- ☐ torus network


INTEL: MIC ARCHITECTURE

□ x86

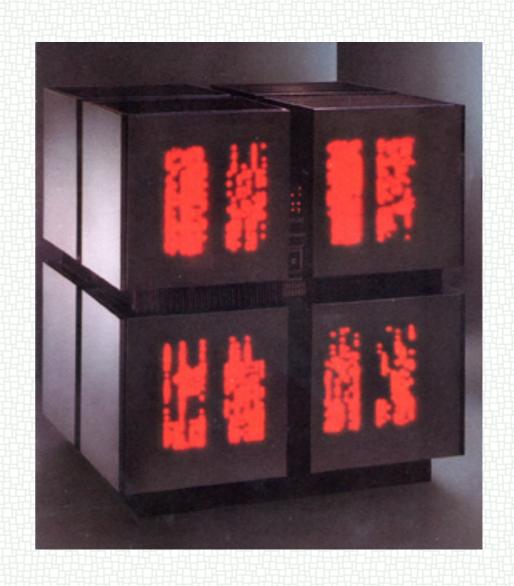
☐ AVX


☐ multiple cores

☐ 3rd party network

NVIDIA: GPU

- ☐ Many cores
- accelerator unit
- required a host



HPC HARDWARE

- ☐ network of nodes
- Many cores per node
- Vector/accelerator FPUs
- ☐ hybrid architecture

HPC HARDWARE

- ☐ network of nodes
- I many cores per node
- ☐ vector/accelerator FPUs
- ☐ hybrid architecture

QLUA

The overarching goal is to develop a platformindependent computational platform for lattice QCD that makes efficient use of both computational scientist's time and evolving hardware on the path to exascale

LUA + QCD = QLUA

- ☐ Lua substrate
- ☐ ideas from Thinking machines days (c* and *Lisp)
- □ QCD-centric ops and datatypes
- ☐ Level III integration
- access to other software packages

LUA BASICS

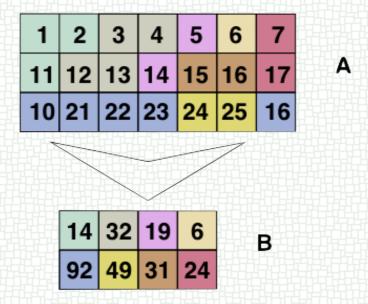
- Scripting language
- ☐ light-weight
- ☐ dynamically typed
- ☐ managed memory
- extendable with c
- embeddable

DATA PARALLEL

- ☐ SPMD paradigm
- ☐ parallel data = serial type + geometry
- ommunications
 - ☐ shifts
 - ☐ reductions
 - □ collectives: gather § scatter

COLORED DATATYPES

- □ @CD-specific types
- ☐ complex vectors [N]
- ☐ complex matrices [n,n]
- 🗆 fermions, propagators, gamma matrices

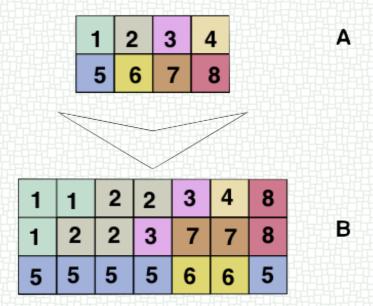

arithmetic operations

QLUA GATHER

0	0	1	1	2	3	3	
0	1	1	2	2	2	3	
0	0	0	0	1	1	0	

0	0	0	0	0	0	1
0	0	0	0	1	1	1
1	1	1	1	1	1	1

12


$$gr = qcd.gather(L1, L2, {I1, I2})$$

 $B = gr:add(A)$

QLUA SCATTER

0	0	1	1	2	3	3	
0	1	1	2	2	2	3	
0	0	0	0	1	1	0	

0	0	0	0	0	0	1	
0	0	0	0	1	1	1	
1	1	1	1	1	1	1	

12

$$sr = qcd.scatter(L1, L2, {I1, I2})$$

 $B = sr(A)$

CURRENT STATUS

- ☐ qlua used in production for DWF and BMW projects
- \square ΔN and $\Delta \Delta$ transitions
- ☐ Algorithm development

DEVELOPMENT PLANS

SHORT TERM PLANS

Production uses Nucleon form factors Nucleon-Delta and Delta form factors ☐ Multigrid inverters development Evolution: Beyond the Standard Model Disconnected Diagrams GPU support

LONG TERM PLANS

- ☐ Beyond alua
 - Scripting and compiling
 - C, LLVM and PTX

REFERENCES

- Open source
- □ https://lattice.lns.mit.edu/trac/downloads
- ☐ https://usqcd.lns.mit.edu/w/index.php/QLUA