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Overview

● Motivation

● What's been done

● Where we might go in the next 1-3 years
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Motivation: Big machines on the way...

Source: http://www.olcf.ornl.gov/wp-content/uploads/2011/07/TitanWebinar.pdf

~18,000 GPUs~18,000 GPUs
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GPUs on the Top 500

● In the latest “Top 500” list (June 2011), three of the top five 
machines feature GPUs.
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The future is heterogeneous

● Driven by power-efficiency considerations: Use the right 
processor for the right workload (latency vs. throughput).

● GPU clusters are a harbinger of things to come and thus a 
key algorithmic test bed: high compute density, constrained 
by memory and interconnect bandwidth.
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GPU memory hierarchy

(GeForce GTX 480)
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QUDA Overview

● “QCD on CUDA” – developed in CUDA C/C++.

● Provides optimized solvers and other routines for the 
following fermion actions:

● Wilson and clover-improved Wilson

● Twisted mass

● Improved staggered (asqtad/HISQ)

● Domain wall

● Details, mailing list, and source code repository available 
here: http://lattice.github.com/quda

● Chroma can be built to use the Wilson/clover code with a 
simple configure flag, likewise for MILC and asqtad/HISQ.

● Straightforward to call directly (e.g., alongside QDP/C)

http://lattice.github.com/quda
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QUDA Capabilities

● CG and BiCGstab solvers for all actions.

● Wilson, clover, twisted-mass, and improved staggered code 
includes:

● Multi-GPU support, using either MPI or QMP for 
communication.

● Multi-shift CG solver.

● Domain-decomposed GCR solver (not proven yet 
for staggered).

● Improved staggered code also includes:

● Asqtad link fattening (HISQ in progress).

● Asqtad fermion force (HISQ in progress).

● Gauge force for 1-loop improved Symanzik action.
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Performance results

● Results are for the even/odd preconditioned clover-improved 
Wilson matrix-vector product,

● Runs were done on a single GeForce GTX 480.

● For reference, a standard dual-socket node with recent 
(Westmere) quad-core Xeons would sustain around 20 
Gflops in single precision for a (fairly) well-optimized Wilson-
clover Dslash.  2x improvement perhaps possible with better 
cache blocking.

● We'll compare results for double, single, and half precision.  
In this case, half is a 16-bit quasi-fixed-point implementation, 
implemented via normalized texture reads.

● The spatial volume is held fixed at 243.
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Matrix-vector performance

● Single and half performance are about 2.8x and 4.9x higher 
than double, respectively.
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GPUs are in serious use for “analysis”

~ 500 GPUs dedicated   
    to LQCD at Jefferson  
    Lab
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Can they also make a dent here? 

“Jaguar” - Oak Ridge Leadership Computing Facility

“Intrepid” - Argonne Leadership 
                  Computing Facility

QPACE – NIC Juelich
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Challenges to scaling up

● GPU-to-host and 
inter-node 
bandwidth

● GPU-to-host and 
inter-node  
latency

~ 3+3 GB/s
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Parallelizing the Dslash

● For illustration, consider a 2D 
problem with a 42 local volume.

● Because we employ even/odd 
(red/black) preconditioning, only 
half the sites will be updated per 
“Dslash” operation.

● We'll take these to be the purplepurple 
sites.
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Parallelizing the Dslash

Step 1:

● Gather boundary sites into 
contiguous buffers to be shipped 
off to neighboring GPUs, one 
direction at a time.

● As part of the gather kernel, a 
“spin projection” step reduces the 
amount of data that must be 
transferred from 24 to 12 floats, at 
the cost of only 12 adds.

PPP

PPP

P

P
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Parallelizing the Dslash

Step 2:

● An “interior kernel” updates all 
local sites to the extent possible.  
Sites along the boundary receive 
contributions from local neighbors.
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Parallelizing the Dslash

Step 2:

● An “interior kernel” updates all 
local sites to the extent possible.  
Sites along the boundary receive 
contributions from local neighbors.

● To finish off a site, we must apply 
the clover term (local 12x12 
complex matrix-vector multiply).  
This is done for a given site once 
contributions from all neighbors 
have been accumulated.
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Parallelizing the Dslash

Step 3:

● Boundary sites are updated by a 
series of kernels (one per 
direction).

● Note that corner sites (and 
edges/faces in higher dimensions) 
introduce a data dependency 
between kernels, which must 
therefore execute sequentially.

● A given boundary kernel must also 
wait for it's “ghost zone” to arrive.
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Parallelizing the Dslash

Step 3:

● Boundary sites are updated by a 
series of kernels (one per 
direction).

● Note that corner sites (and 
edges/faces in higher dimensions) 
introduce a data dependency 
between kernels, which must 
therefore execute sequentially.

● A given boundary kernel must also 
wait for it's “ghost zone” to arrive.Done!Done!
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Overlapping communications
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Hardware

● Out test bed is the “Edge” cluster at Lawrence Livermore 
National Lab:

● 206 nodes available for batch jobs, interconnected by 
QDR infiniband

● 2 Intel Xeon X5660 processors per node (6-core 
Westmere @ 2.8 GHz)

● 2 Tesla M2050 cards per node, sharing 16 PCI-E lanes 
to the IOH via a switch

● ECC enabled on the Teslas

● CUDA 4.0 RC1 (but no GPU-Direct)

● Driver version 270.27

● Pre-release version of QUDA 0.4, interfaced to Chroma 
(an application suite for lattice QCD).
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Matrix-vector performance results

V = 32V = 3233 x 256 x 256
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Solver performance

(BiCGstab, mixed single/half with reliable updates)

Comms-boundComms-bound

V = 32V = 3233 x 256 x 256
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Building a scalable solver

● We need a smarter algorithm, one that takes advantage of 
the ample compute throughput available while minimizing 
communication.

● This led us to adopt a domain-decomposition approach by 
applying an additive Schwarz preconditioner to GCR.

● Most of the work is in the 
preconditioner, which solves a 
linear system (to low accuracy via 
MR) but with Dirichlet boundary 
conditions between GPUs.  In 
other words, communication is 
simply turned off in the Dslash.

● Furthermore, this task is well-
suited to reduced (e.g., half) 
precision.
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Solver performance

V = 32V = 3233 x 256 x 256
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Solver time to solution

V = 32V = 3233 x 256 x 256
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Comparisons

● For a fair comparison, time to solution is the relevant 
quantity, since algorithms differ in the total number of 
operations required to reach a given level of accuracy.

● We can define an “effective Tflops” number for GCR-DD, 
however, in terms of the level of performance that pure 
single-precision BiCGstab would have to achieve to obtain 
the same time to solution.

● This yields an effective 9.95 Tflops for GCR-DD on 128 
GPUs and 11.5 Tflops on 256 GPUs.

● This allows us to make rough comparisons to comparable 
runs on various capability machines:

● Cray XT4 (Jaguar at Oak Ridge LCF)

● Cray XT5 (Jaguar PF at Oak Ridge LCF)

● BlueGene/P (Intrepid at Argonne LCF)
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Comparisons

V = 32V = 3233 x 256 x 256
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Much to do (no particular order)

● Efficient multi-GPU solvers for all actions (especially DWF)

● Gauge generation with all critical kernels offloaded

● Work underway for improved staggered       
(MILC+QUDA, eventually FUEL)

● Strong-scaling HMC to O(1000) GPUs or more

● Will require serious algorithmic research                
(low-hanging fruit: overlapping blocks, 
multiplicative Schwartz)

● BSM: Additional gauge groups & representations

● On-going optimization for new architectures as they emerge

● Going beyond hand-coding (see Bálint's talk)

● Multi-GPU multigrid (Wilson/clover initially)
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Outlook: Multigrid on GPUs

● GPUs clearly win for many workloads in lattice QCD (5-10x 
improvement in price/performance)

● . . . but multigrid on traditional clusters is competitive (up to 
20x over standard solvers at light masses).

● Next step: MG2: Multi-GPU multigrid (up to 100x ?).

Multi-GPU  Multi-GPU  x x   MultigridMultigrid    =  =  ??
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NVIDIA points of contact

● Mike Clark – currently >50% on QCD

● “NVAMG” – Effort within Jonathan Cohen's “Emerging 
Applications” group, partly inspired by HYPRE

● Ron – Evaluating/influencing future architectures, some 
continued work on QUDA

● Many interested in issues of programmability and 
performance characterization.
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Bonus slides
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Tricks to reduce memory traffic

● Reconstruct SU(3) matrices from 8 or 12 real numbers on the 
fly, e.g.,

● Choose a gamma basis with 4 diagonal.

● Fix to the temporal gauge (setting gauge                             
links in the t-direction to the identity).

similarity
transforms 
on D

P. De Forcrand, D. Lellouch and C. Roiesnel, “Optimizing a lattice 
QCD simulation program,” J. Comput. Phys. 59, 324 (1985).
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Mixed precision with reliable updates

● Using a mixed-precision solver incorporating “reliable 
updates” (Clark et al., arXiv:0911.3191) with half precision  
greatly reduces time-to-solution while maintaining double 
precision accuracy.
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Mixed precision with reliable updates

● In the usual method of iterative refinement (or “defect 
correction”), the Krylov subspace is thrown away at every 
restart:

● An alternative is “reliable updates,” originally introduced to 
combat residual drift caused by the erratic convergence of 
BiCGstab: G. L. G. Sleijpen, and H. A. van der Vorst, “Reliable updated 
residuals in hybrid Bi-CG methods,” Computing 56, 141-164 (1996).
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Mixed precision with reliable updates

● New (?) idea is to apply this approach to mixed precision.         
                                            (Clark et al., arXiv:0911.3191)

● Reliable updates seems to win handily at light quark masses (and is 
no worse than iterative refinement at heavy masses).

•   ^ denotes reduced precision.
•      is a parameter determining     
    the frequency of updates.
•            denotes the maximum       
    iterated residual since the last    
    update.
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GCR-DD

. . .

. . .


