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Overview

« Motivation
« What's been done

 Where we might go in the next 1-3 years
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Motivation: Big machines on the way...
ORNL’s “Titan” 20 PF System Goals

~18,000 GPUs

» Designed for science from the ground up

« Operating system upgrade of today’s

Linux Operating System —~—

» Gemini interconnect
 3-D Torus

* Globally addressable
memory

 Advanced synchronization
features

» New accelerated node design using GPUs
* 10-20 PF peak performance
* 9x performance of today’s XT5
» Larger memory
« 3x larger and 4x faster file system

-
)
——

8 OLCFeeee

Disclaimer: No contract with vendor is in place
Source: http://www.olcf.ornl.gov/wp-content/uploads/2011/07/TitanWebinar.pdf
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Motivation: Big machines on the way...

CRANY"

Cray XK6 Compute Node

XK6 Compute Node
Characteristics

AMD Opteron 6200 Interlagos
16 core processor

Tesla X2090 @ 665 GF

Host memory
16 or 32GB
1600 MHz DDR3

Tesla X090 memory
6GB GDDRS5 capacity

Gemini high speed Interconnect

Upgradeable to NVIDIA’s
Kepler many-core processor

Slide courtesy of Cray, Inc.
9 OLCFeeee Disclaimer: No contract with vendor is in place
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GPUs on the Top 500

* In the latest “Top 500" list (June 2011), three of the top five
machines feature GPUs.

Rank Site Computer/Year Vendor Cores w—— Rpeak Power
RIKEN Advanced Institute for K computer, SPARCE4 VIlifx 2.0GHz,
1 Computational Science [AICS) Tofu interconnect / 2011 548352 B8162.00 B773.63 9898.56
Japan Fujitsu
MNational Supercomputing Center in ;i%ghghlAabNﬂﬂrnTE GhI:'TJP’F{{I'E)‘?ggD
2 Tianjin ) ' T 186368 2566.00 4701.00 4040.00
China 8C / 2010
NUDT
DOE/SC/Oak Ridge National Jaguar - Cray XT5-HE Opteron 6-core
3 Laboratory 2.6 GHz / 2009 224162 1759.00 2331.00 6950.60
United States Cray Inc.
Mational Supercomputing Centre in }ngggaahlvp;qugrcéag%%% ?;i[i?’ ;Intal
4 Shenzhen (NSCS) 2010 e 120640 1271.00 2984.30 2580.00
China .
Dawning
GSIC Center, Tokyo Institute of EF;UEAMESSE(E;SHTDP I:rl'ollaigntgspLSEms
5 Technology [ Ason : Nvidia : 73278  1192.00 2287.63 1398.61
Japan Linuwx¢/Windows / 2010
NEC/HP
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The future is heterogeneous

[IDC

-

IDC EXECUTIVE BRIEF

Heterogeneous Computing: A New Paradigm
for the Exascale Era

November 2011

Adapted from IDC HPC End-User Study of Processor and Accelerator Trends in Technical Computing by Earl C.
Joseph and Steve Conway, IDC #228098

Sponsored by NVIDIA

The Rise of the Heterogeneous Computing Paradigm

« Driven by power-efficiency considerations: Use the right
processor for the right workload (latency vs. throughput).

 GPU clusters are a harbinger of things to come and thus a
key algorithmic test bed: high compute density, constrained
by memory and interconnect bandwidth.
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GPU memory hierarchy
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QUDA Overview

« “QCD on CUDA" - developed in CUDA C/C++.

* Provides optimized solvers and other routines for the
following fermion actions:

* Wilson and clover-improved Wilson
« Twisted mass

« Improved staggered (asqtad/HISQ)
« Domain wall

« Details, mailing list, and source code repository available
here: http://lattice.github.com/quda

« Chroma can be built to use the Wilson/clover code with a
simple configure flag, likewise for MILC and asqgtad/HISQ.

« Straightforward to call directly (e.qg., alongside QDP/C)
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http://lattice.github.com/quda

QUDA Capabilities

« CG and BiCGstab solvers for all actions.

« Wilson, clover, twisted-mass, and improved staggered code
includes:

« Multi-GPU support, using either MPI or QMP for
communication.

« Multi-shift CG solver.

« Domain-decomposed GCR solver (not proven yet
for staggered).

 Improved staggered code also includes:
« Asqgtad link fattening (HISQ in progress).
e Asqgtad fermion force (HISQ in progress).
« Gauge force for 1-loop improved Symanzik action.
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Performance results

« Results are for the even/odd preconditioned clover-improved
Wilson matrix-vector product,

M=(1-A'D.,A'D,.)
 Runs were done on a single GeForce GTX 480.

« For reference, a standard dual-socket node with recent
(Westmere) quad-core Xeons would sustain around 20
Gflops in single precision for a (fairly) well-optimized Wilson-
clover Dslash. 2x improvement perhaps possible with better
cache blocking.

« We'll compare results for double, single, and half precision.
In this case, half is a 16-bit quasi-fixed-point implementation,
iImplemented via normalized texture reads.

« The spatial volume is held fixed at 24°.
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Matrix-vector performance
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* Single and half performance are about 2.8x and 4.9x higher
than double, respectively.
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GPUs are In serious use for “analysis”
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Can they also make a dent here?

put il A
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QPACE - NIC Juelich

“Intrepid” - Argonne Leadership
Computing Facility

“Jaguar” - Oak Ridge Leadership Computing Facility
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Challenges to scaling up
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Parallelizing the Dslash

For illustration, consider a 2D
-------------------- problem with a 4° local volume.

-E)"
@
@)
[

« Because we employ even/odd
(red/black) preconditioning, only
half the sites will be updated per
“Dslash” operation.

® O @ O

©C @ O o

« We'll take these to be the purple
sites.
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Parallelizing the Dslash

Step 1:

« Gather boundary sites into
-------------------- contiguous buffers to be shipped

amount of data that must be
transferred from 24 to 12 floats, at
the cost of only 12 adds.

;@ 0 0 O off to neighboring GPUs, one
~@®=0 o 0 o direction at a time.

®@ O @ O « As part of the gather kernel, a

L0 © 0 ©° “spin projection” step reduces the
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Parallelizing the Dslash

Step 1:

« Gather boundary sites into
"""""""" - contiguous buffers to be shipped

,® 0 @ O""" off to neighboring GPUs, one

‘'O @ O O direction at a time.

®@ O o O-">‘—> « As part of the gather kernel, a

O ® 0 ® “spin projection” step reduces the

------------ amount of data that must be
: transferred from 24 to 12 floats, at
' the cost of only 12 adds.
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Parallelizing the Dslash

Step 1:

« Gather boundary sites into
-------------------- contiguous buffers to be shipped

amount of data that must be
transferred from 24 to 12 floats, at
the cost of only 12 adds.

;@ 0 0 O off to neighboring GPUs, one

‘'O @ O O direction at a time.

®@ O @ O As part of the gather kernel, a

® ° “spin projection” step reduces the
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Parallelizing the Dslash

Step 1:

« Gather boundary sites into
------------------ contiguous buffers to be shipped
off to neighboring GPUs, one
direction at a time.

« As part of the gather kernel, a
“spin projection” step reduces the
amount of data that must be
transferred from 24 to 12 floats, at
the cost of only 12 adds.
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Parallelizing the Dslash

Step 2:

« An “interior kernel” updates all
-------------------- local sites to the extent possible.
Sites along the boundary receive
contributions from local neighbors.

-(-)"
@)
@)
@)

@)
@)
@)
@)

© 0 0 O
@)
O

© 0 0 O
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Parallelizing the Dslash

Step 2:
© © © © « An “interior kernel” updates all
sl el bl local sites to the extent possible.
D Bl 0:1© Sites along the boundary receive
0'o + O >§ ' @ contributions from local neighbors.
o §<O+O © « To finish off a site, we must apply
0 0re<0 >0 0 the clover term (local 12x12
mmsdsmsss—m--e-- complex matrix-vector multiply).
1O 0 O O This is done for a given site once

contributions from all neighbors
have been accumulated.
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Parallelizing the Dslash

between kernels, which must
therefore execute sequentially.

Step 3:
@ © 0 O . Bogndary sites are updated by a
=eeqecesmmmmeeee- series of kernels (one per
O':" @ ¢ o ® direction).
© © o6 oe © « Note that corner sites (and
O%@®@ O @ 0:0 edges/faces in higher dimensions)
©o'0 @ 0 @'0 introduce a data dependency

A given boundary kernel must also
wait for it's “ghost zone” to arrive.
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Parallelizing the Dslash

Step 3:
© © 0 © * Boundary sites are updated by a
i R series of kernels (one per
©:0 0 6 0.0 direction).
© © 00 ":’O « Note that corner sites (and
0:!@ 0 @ 0:0 edges/faces in higher dimensions)
o O ® O ‘4 o Introduce a data dep.endency
hREEEEEEEEEEEE between kernels, which must
1O 0 0 O, therefore execute sequentially.

A given boundary kernel must also
wait for it's “ghost zone” to arrive.
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Parallelizing the Dslash

Step 3:

« Boundary sites are updated by a
-------------------- series of kernels (one per
direction).

-(-)"
@)
@)
@)

edges/faces in higher dimensions)

Introduce a data dependency
between kernels, which must

therefore execute sequentially.

O
© « Note that corner sites (and
O
O

© 0 0 O

A given boundary kernel must also
wait for it's “ghost zone” to arrive.
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Parallelizing the Dslash

Step 3:

o « Boundary sites are updated by a
---------- z series of kernels (one per
O
O
O

@)
@)
@)

direction).

edges/faces in higher dimensions)

Introduce a data dependency
between kernels, which must

therefore execute sequentially.

© 0 0 O

O
© « Note that corner sites (and
O
O

A given boundary kernel must also
Done! wait for it's “ghost zone” to arrive.
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Overlapping communications

Total 9 cuda Streams exterior

kernels
élnteriorkernel XY ZT7

sync

2: X-forward GPU kernel

cudaMemcpy

sync memcpy (host)

8: T-forward

MPI send/recv

S

gather kernel’

GPU idle

[ i BN BN .
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Hardware

« QOut test bed is the “Edge” cluster at Lawrence Livermore
National Lab:

« 206 nodes available for batch jobs, interconnected by
QDR infiniband

« 2 Intel Xeon X5660 processors per node (6-core
Westmere @ 2.8 GHz)

o 2 Tesla M2050 cards per node, sharing 16 PCI-E lanes
to the IOH via a switch

« ECC enabled on the Teslas
« CUDA 4.0 RC1 (but no GPU-Direct)
e Driver version 270.27

e Pre-release version of QUDA 0.4, interfaced to Chroma
(an application suite for lattice QCD).
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Matrix-vector performance results

V = 32° x 256

256

128 - —

Gflops per GPU
o)
B
[
I

&0 Sp
HP
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16— | | | | |
8 16 32 64 128 256

Number of GPUs
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Solver performance

32

16

Tflops

@—@® BiCGstab

"

.

16

32 64
Number of GPUs

128

256

(BiCGstab, mixed single/half with reliable updates)

V = 32° x 256

Comms-bound

Ron Babich (NVIDIA) - USQCD Algorithms & Computing - November 10, 2011

30



Building a scalable solver

 We need a smarter algorithm, one that takes advantage of
the ample compute throughput available while minimizing
communication.

 This led us to adopt a domain-decomposition approach by
applying an additive Schwarz preconditioner to GCR.

« Most of the work is in the
preconditioner, which solves a
linear system (to low accuracy via
MR) but with Dirichlet boundary ©
conditions between GPUs. In @)
other words, communication is ®
@)

simply turned off in the Dslash.

© 06 0 O

 Furthermore, this task is well-
suited to reduced (e.qg., half)
precision.
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Building a scalable solver

 We need a smarter algorithm, one that takes advantage of
the ample compute throughput available while minimizing
communication.

 This led us to adopt a domain-decomposition approach by
applying an additive Schwarz preconditioner to GCR.

« Most of the work is in the

preconditioner, which solves a © © © O.
linear system (to low accuracy via  ==-i-=======-=---~ Tl
MR) but with Dirichlet boundary D A Gl i
conditions between GPUs. In 0'o0 + O ;
other words, communication is o §<o * oo
simply turned off in the Dslash. : :
. . ©,0 44 O ' @
« Furthermore, this task is well- mmdmsmmmemmne-
suited to reduced (e.g., half) 10 0 0 O,
precision. ' Done! '
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Solver performance

V = 32° x 256
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Solver time to solution

V = 32° x 256

64

o
)
|

Time to solution (sec)
[S—
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@—@® BiCGstab
B—l GCR-DD
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Comparisons

e For a fair comparison, time to solution is the relevant
quantity, since algorithms differ in the total number of
operations required to reach a given level of accuracy.

« We can define an “effective Tflops” number for GCR-DD,
however, in terms of the level of performance that pure
single-precision BiCGstab would have to achieve to obtain
the same time to solution.

« This yields an effective 9.95 Tflops for GCR-DD on 128
GPUs and 11.5 Tflops on 256 GPUs.

« This allows us to make rough comparisons to comparable
runs on various capability machines:

 Cray XT4 (Jaguar at Oak Ridge LCF)
 Cray XT5 (Jaguar PF at Oak Ridge LCF)
* BlueGene/P (Intrepid at Argonne LCF)
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Comparisons

V = 32° x 256
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Much to do (no particular order)

« Efficient multi-GPU solvers for all actions (especially DWF)
 Gauge generation with all critical kernels offloaded

 Work underway for improved staggered
(MILC+QUDA, eventually FUEL)

« Strong-scaling HMC to O(1000) GPUs or more

« Will require serious algorithmic research
(low-hanging fruit: overlapping blocks,
multiplicative Schwartz)

« BSM: Additional gauge groups & representations

« On-going optimization for new architectures as they emerge
« Going beyond hand-coding (see Balint's talk)

« Multi-GPU multigrid (Wilson/clover initially)

Ron Babich (NVIDIA) - USQCD Algorithms & Computing - November 10, 2011
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Outlook: Multigrid on GPUs

 GPUs clearly win for many workloads in lattice QCD (5-10x
Improvement in price/performance)

e ... but multigrid on traditional clusters is competitive (up to
20x over standard solvers at light masses).

e Next step: MG?: Multi-GPU multigrid (up to 100x ?).

I I I 1000 T T T
double precision CGNE e
Bl 2009 (2 x Quad-core Nehalem, QDR IB, and 2 x GTX 285) mixed precision CGNE - .
- 9—@ 2009 (2 x Quad-core Nehalem and QDR IB) double precision BICGStab - #--
@—@ 2006 (Dual-core Pentium D and SDR IB) ~. mixed precision BICGStab —&—
X, ., mixed precision multigrid —s—
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% 256 é
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g E
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Multi-GPU x Multigrid = ?
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NVIDIA points of contact

« Mike Clark — currently >50% on QCD

 “NVAMG" - Effort within Jonathan Cohen's “Emerging
Applications” group, partly inspired by HYPRE

 Ron - Evaluating/influencing future architectures, some
continued work on QUDA

« Many interested in issues of programmability and
performance characterization.
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Bonus slides
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Tricks to reduce memory traffic

« Reconstruct SU(3) matrices from 8 or 12 real numbers on the

fly, e.q.,
y g a aiy az das
b = bl bz bg C = (a X b)*
C C1 Co C3

P. De Forcrand, D. Lellouch and C. Roiesnel, “Optimizing a lattice
QCD simulation program,” J. Comput. Phys. 59, 324 (1985).

- Choose a gamma basis with y, diagonal. ™\

a 2 0 0 0
Pt 0 2 0 0
1 0 =£1 0 - 0O 0 0 O l
0 1 0 =+I 0000 similarity
pP*t = —>
ié i‘f é (1) < 000 0 transforms
0O 0 2 O
~ 00 0 2
* Fix to the temporal gauge (setting gauge

links in the t-direction to the identity).

_/
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Mixed precision with reliable updates

« Using a mixed-precision solver incorporating “reliable
updates” (Clark et al., arXiv:0911.3191) with half precision
greatly reduces time-to-solution while maintaining double
precision accuracy.

10000 : : | 3 - T - | ' | ' |
o9 D_oublc
= Single @—@® Double
8000 [~ Half - 4 m—= Double/Single
Mo Double/Half
P
3
= i n 3 W
g 6000 =¥
(&}
3 "g _
<z
“E’ 4000 [ | wmal
v
E—1
2000 — — - @ & & & & & & & &
0 | 1 [ T _ ] 1 I 1 I 1 I 1 |
042 041 04 Sa 0415 041 0405 04
mass < mass
- P—
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Mixed precision with reliable updates

 |In the usual method of iterative refinement (or “defect
correction”), the Krylov subspace is thrown away at every

restart:
o — b — AZCQ;
k = 0:;

while ||rx|| > € do

Solve Api+1 = 7 to precision €™
Tkt1 = Tk T+ Dt1:

Thet1 = b — Axpqy ;

k=Fk+1;

end

« An alternative is “reliable updates,” originally introduced to
combat residual drift caused by the erratic convergence of

BiCGstab: G. L. G. Sleijpen, and H. A. van der Vorst, “Reliable updated
residuals in hybrid Bi-CG methods,” Computing 56, 141-164 (1996).
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Mixed precision with reliable updates

« New (?) idea is to apply this approach to mixed precision.
(Clark et al., arXiv:0911.3191)

?“()Zb—ACUQ;
’f‘o:’f‘;
T = 0;
k= 0;

while ||7|| > € do
Low precision solver iteration: 7y — Tra1, Tk — Thiy1;
if ||Fpaq]| < OM(7) then
Tip1 = X + Tpgt;
rie1 = b — A$l+1 ]

~ denotes reduced precision.

Lh+1 B 0_’ * ¢ is a parameter determining

Tyl =15 the frequency of updates.

[=1+1; * M(7) denotes the maximum
Zﬂd . iterated residual since the last

update.
end P

« Reliable updates seems to win handily at light quark masses (and is
no worse than iterative refinement at heavy masses).
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GCR-DD

k=20
o = b— M:L‘o
’f‘(}:’ro
z=0
while ||ro|| > tol do
Pr = K7y
2k = Mpy

// Orthogonalization
fori+-0to k—1do

Bik = (2:, 2k)
2k = 2k — Bi,kZi

end
Ye = || 2]
2k = 2k /Y

o = (2k,ﬁc)
Tht1 = Tk — Qk 2k

k=k+1

// High precision restart
if k£ = kmaaz or ||7k||/||T0]| < 6 or ||7k|| < tol then
for [ < k—1 down to 0 do
‘ solve v x: + Z?;;_H Biixi = ay for x;i
end
& =300 Xibs
T=xT+Z
ro = b — Ax
’f‘(} =T0
=0
k=0
end

end
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