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The Zoltan Toolkit 

Unstructured Communication 

Data Migration Matrix Ordering 

Dynamic Load  
Balancing 

Distributed Data Directories 
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Library of parallel combinatorial algorithms for 
unstructured, dynamic and/or adaptive computations. 

Graph Coloring 
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Zoltan’s Use in Applications 
Data-structure neutral design supports many 

different applications. 

Multiphysics simulations 
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Zoltan’s use in large-scale  

experiments and simulations 
Partitioning 
Method 

Application Problem 
Size 

Number of 
Processes 

Number 
of Parts 

Architecture Source 

Graph PHASTA CFD 34M 
elements 

16K 16K BG/P Zhou, et 
al., RPI 

Hypergraph PHASTA CFD 1B elements 4096 280K Cray XT/5 Zhou, et 
al., RPI 

Hypergraph Sparta LB 
algorithms 

800M zones 8192 262K Hera (AMD 
Quadcore) 

Lewis, 
LLNL 

Geometric Pic3P 
particle-in-cell 

5B particles 24K 24K Cray XT/4 Candel, 
et al., 
SLAC 

Geometric MPSalsa 
CFD   

208M nodes 12K 12K RedStorm Lin, 
SNL 

Geometric Trilinos/ML 
Multigrid in 
ALEGRA 
shock physics  

24.6M rows 
1.2B non-
zeros 

24K  24K RedStorm Hu, et 
al., SNL 
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Partitioning and  
Load Balancing 

  Assignment of application data to processors for parallel 
computation. 

  Applied to grid points, elements, matrix rows, particles, ... 
  Trade-offs in partitioning and load-balancing algorithms: 

  Quality vs. speed. 
  Geometric locality vs. data dependencies. 
  High-data movement costs vs. tolerance for remapping. 
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Zoltan’s Suite of  
Partitioning Algorithms 

  Geometric methods:  Partition based on geometric locality. 
  Parts contain objects that are physically close to each other. 
  Useful for particle methods, adaptive mesh refinement, 

visualization, contact detection, crash simulations, specialized 
geometries 

Zoltan’s geometric partitioning in SLAC’s PIC3P 
enabled solution of large particle-based  

problems (24k CPUs, 750M DOFs, 5B particles).  
Courtesy of Arno Candel, SLAC, 2009. 
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Zoltan’s Suite of  
Partitioning Algorithms 

  Topology-based methods:  Partition based on connectivity. 
  Parts contain objects that depend on each other. 
  Graph and hypergraph partitioning methods. 
  Useful for matrices, networks, meshes, multiphysics, irregular 

data. 

Number�
 of cores


Time (s) 
 Efficiency


16k
 222.03
 1


32k
 112.43
 0.987


64k
 57.09
 0.972


128k
 31.35
 0.885


Zoltan’s topology-based methods 
helped achieve strong scalability 
beyond 128K cores (BG/P) for CFD  
code PHASTA. 
Courtesy of Mark Shephard, RPI. 
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Zoltan Ordering 

  Global ordering produces fill-reducing 
permutations for sparse matrix factorization. 
  Interfaces to PT-Scotch (Pellegrini, Chevalier; 

INRIA-LaBRi) and ParMETIS (Karypis et al.; U. 
Minnesota) 

  Local ordering improves cache utilization. 
  Space-filling curve ordering of in-processor data. 
 

Grid size Reorder 
cells 

Reorder 
cells & 
edges 

Reorder 
cells, edges 
& vertices 

163842 13.4% 14.8% 15.6% 
655362 19.0% 19.4% 17.7% 

2621442 23.0% 24.9% 20.6% 

Zoltan’s local data ordering 
enabled 13-25% reduction in 

overall execution time in finite 
volume climate code FV-MAS.  

Courtesy of Michael Wolf, SNL. 



9 

Zoltan Graph Coloring 

  Assign colors (labels) to vertices such that neighboring 
vertices have different colors. 

  Parallel distance-1, distance-2 and partial distance-2 graph 
coloring. 
  Finding independent sets and concurrent computations (e.g., for 

multithreaded operations) 
  Efficient Jacobian and Hessian calculations (by identifying 

structurally orthogonal representations of matrices) 
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Graph-based 
decomposition 

Geometric 
decomposition 

Zoltan_Comm_Do 

Zoltan_Comm_Do_Reverse 

Zoltan Unstructured  
Communication Package 

  Simple primitives for efficient irregular communication.   
  Zoltan_Comm_Create: Generates communication plan. 

•  Processors and amount of data to send and receive. 
  Zoltan_Comm_Do: Send data using plan. 

•  Can reuse plan. (Same plan, different data.) 
  Zoltan_Comm_Do_Reverse:  Inverse communication. 

  Used for most communication in Zoltan. 
  Exposed through API for application use. 
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  Allows applications to locate off-processor data. 
  Rendezvous algorithm (Pinar, 2001). 
  Directory distributed in known way (hashing) across processors. 
  Requests for object location  

sent to processor storing  
the object’s directory entry. 

  Used in finite element and  
particle-in-cell codes (e.g., Aleph)  
to determine communication 
patterns. 
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Zoltan Software 

  Open-source software under LGPL license. 
  http://www.cs.sandia.gov/Zoltan 
 

  Callback-function API: 
  Separates application data from Zoltan data 
  Easy to use for applications; no complicated data structures to 

build 
  Allows use of Zoltan in wide-range of applications 

  Interfaces: 
  C, C++, Fortran90 
  Matrix-based interface through Trilinos  
  Mesh-based interface through ITAPS 
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Trilinos provides building  
blocks for application 

development and research. 

Numerical math 
Convert to models that 
can be solved on digital 

computers 

Algorithms 
Find faster and more 
efficient ways to solve 

numerical models 

L(u)=f 
Math. model 

Lh(uh)=fh 
Numerical model 

uh=Lh
-1 fh 

Algorithms 

physics 

computation 

Linear 
Nonlinear 

Eigenvalues 
Optimization 

Automatic diff. 
Domain dec. 

Mortar methods 

Time domain 
Space domain 

Matrix/Vector 
Utilities 

Interfaces 
Load Balancing 

solvers 

discretizations methods 

core 

FASTMath contacts for Trilinos: 
    Andy Salinger (agsalin@sandia.gov) 
    Jonathan Hu (jhu@sandia.gov) 
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Trilinos  
Software Infrastructure 

  Trilinos Capabilities Areas: 
  Discretizations     Scalable Linear Algebra 
  Linear & Eigen Solvers    Meshes & Load Balancing 
  Nonlinear, Transient & Optimization Solvers  
  Scalable I/O 
  Software Engineering Technologies & Integration  
  Testing, Tools & Interfaces  

  Trilinos is NOT a single monolithic piece of software.  
  Capabilities distributed in individual “packages.” 
  Any collection of packages can be combined. 
  Applications don’t need all of Trilinos to get things done. 
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For more information… 

  Zoltan website:  http://www.cs.sandia.gov/Zoltan 
  Download Zoltan as part of Trilinos or as stand-alone library. 

  Trilinos website:  http://trilinos.sandia.gov 

  Annual Forums: 
  DOE ACTS Tutorial (3rd week in August) at LBL. 
  Annual Trilinos User Group Meeting in November at SNL. 
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Trilinos Core Packages 

Objective Packages 

Parallel/serial Matrix/
Vector classes 

Epetra: production-ready; C++; double-precision  
Tpetra:  next-generation C++; templated scalar & ordinal types 
Kokkos:  multicore/GPU node description and operators 

Interfaces Thyra:  Abstract interfaces to linear algebra 
Stratimikos:  Abstract problem description 
FEI, Shards:  Finite-element interfaces 

Load Balancing, 
Ordering, Coloring 

Zoltan:  suite of combinatorial algorithms 
Isorropia: Epetra interface to Zoltan 

“Skins” PyTrilinos:  Python interfaces using SWIG 
WebTrilinos:  Web-based interface for testing, experimentation 
ForTrilinos:  Fortran interface 
Ctrilinos:  C wrappers 

C++ utilities Teuchos: Timers, parameter lists, reference-counted pointers;         
LAPACK/BLAS wrappers 
EpetraExt: transforms; matrix-matrix multiply; transpose 
Triutils: I/O with common matrix formats 
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Trilinos Discretizations  
and Methods 

Objective Package(s) 

Mesh management STKMesh: Flexible mesh database 
Pamgen: In-line mesh generation 
Mesquite: Mesh-quality improvement; r-refinement 

Discretization Intrepid:  discretization for general FEM, FV, & FD cell types 
Sundance:  Finite element method; declarative programming 
Phalanx: Field-evaluation kernel 

Time Integration Rythmos:  backward/forward Euler, Runge-Kutta, BFD 
Automatic 
differentiation 

Sacado: AD at element level via templating; forward/reverse/Taylor-
polynomial modes 

Mortar methods Moertel:  nonconforming mesh tying and contact formulations 
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Trilinos Solvers 
 Objective Package(s) 

Iterative linear solvers AztecOO: Krylov subspace solvers: CG, GMRES, Bi-
CGSTAB; Incomplete factorization preconditioners  
Belos: Block-based solvers; recycling solvers; templated C++ 
Komplex: solves complex-valued linear systems via 
equivalent real-valued systems 

Direct sparse linear solvers Amesos/Amesos2: Interface to direct solvers KLU, 
UMFPACK, SuperLU, MUMPS, ScaLAPACK 

Direct dense linear solvers Epetra, Teuchos, Pliris 
Iterative eigenvalue solvers Anasazi:  Block-based Krylov-Schur, Davidson, LOBPCG 
ILU-type preconditioners AztecOO 

IFPACK/Ifpack2:  Overlapping Schwarz  
Multilevel preconditioners ML: Smoothed aggregation; multigrid; domain decomposition 
Block preconditioners Meros, Teko: for coupled simultaneous solution variables  
Nonlinear system solvers NOX: Broyden, Newton, Tensor methods 

LOCA: Continuation algorithms 
Optimization (SAND) MOOCHO, Aristos:  Reduced and full-space SQP 

TriKota: Interface to DAKOTA toolkit 
Stochastic PDEs Stokhos: intrusive stochastic Galerkin uncertainty quantification 
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Solver Coverage 

Bifurcation Analysis 
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