
1

The Zoltan Toolkit

Karen Devine

Scalable Algorithms Department
 Sandia National Laboratories

FASTMath SciDAC Institute

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

2

The Zoltan Toolkit

Unstructured Communication

Data Migration Matrix Ordering

Dynamic Load
Balancing

Distributed Data Directories

A B C
0 1 0

D E F
2 1 0

G H I
1 2 1

Library of parallel combinatorial algorithms for
unstructured, dynamic and/or adaptive computations.

Graph Coloring

3

Zoltan’s Use in Applications
Data-structure neutral design supports many

different applications.

Multiphysics simulations

x b A

=

Linear solvers &
preconditioners

Adaptive mesh refinement

Crash simulations

Particle methods

Parallel electronics networks

1
2 Vs

SOURCE_VOLTAGE

1
2 Rs

R

1
2 Cm012

C

1
2 Rg02

R

1
2 Rg01

R

1
2 C01

C

1
2 C02

C
1 2 L2

INDUCTOR

1 2 L1
INDUCTOR 1 2 R1

R

1 2 R2
R

1
2 Rl

R

1
2 Rg1

R

1
2 Rg2

R

1
2 C2

C

1
2 C1

C

1
2 Cm12

C

4
Zoltan’s use in large-scale

experiments and simulations
Partitioning
Method

Application Problem
Size

Number of
Processes

Number
of Parts

Architecture Source

Graph PHASTA CFD 34M
elements

16K 16K BG/P Zhou, et
al., RPI

Hypergraph PHASTA CFD 1B elements 4096 280K Cray XT/5 Zhou, et
al., RPI

Hypergraph Sparta LB
algorithms

800M zones 8192 262K Hera (AMD
Quadcore)

Lewis,
LLNL

Geometric Pic3P
particle-in-cell

5B particles 24K 24K Cray XT/4 Candel,
et al.,
SLAC

Geometric MPSalsa
CFD

208M nodes 12K 12K RedStorm Lin,
SNL

Geometric Trilinos/ML
Multigrid in
ALEGRA
shock physics

24.6M rows
1.2B non-
zeros

24K 24K RedStorm Hu, et
al., SNL

5

Partitioning and
Load Balancing

  Assignment of application data to processors for parallel
computation.

  Applied to grid points, elements, matrix rows, particles, ...
  Trade-offs in partitioning and load-balancing algorithms:

  Quality vs. speed.
  Geometric locality vs. data dependencies.
  High-data movement costs vs. tolerance for remapping.

6

Zoltan’s Suite of
Partitioning Algorithms

  Geometric methods: Partition based on geometric locality.
  Parts contain objects that are physically close to each other.
  Useful for particle methods, adaptive mesh refinement,

visualization, contact detection, crash simulations, specialized
geometries

Zoltan’s geometric partitioning in SLAC’s PIC3P
enabled solution of large particle-based

problems (24k CPUs, 750M DOFs, 5B particles).
Courtesy of Arno Candel, SLAC, 2009.

7

Zoltan’s Suite of
Partitioning Algorithms

  Topology-based methods: Partition based on connectivity.
  Parts contain objects that depend on each other.
  Graph and hypergraph partitioning methods.
  Useful for matrices, networks, meshes, multiphysics, irregular

data.

Number�
 of cores

Time (s)
 Efficiency

16k
 222.03
 1

32k
 112.43
 0.987

64k
 57.09
 0.972

128k
 31.35
 0.885

Zoltan’s topology-based methods
helped achieve strong scalability
beyond 128K cores (BG/P) for CFD
code PHASTA.
Courtesy of Mark Shephard, RPI.

8

Zoltan Ordering

  Global ordering produces fill-reducing
permutations for sparse matrix factorization.
  Interfaces to PT-Scotch (Pellegrini, Chevalier;

INRIA-LaBRi) and ParMETIS (Karypis et al.; U.
Minnesota)

  Local ordering improves cache utilization.
  Space-filling curve ordering of in-processor data.

Grid size Reorder
cells

Reorder
cells &
edges

Reorder
cells, edges
& vertices

163842 13.4% 14.8% 15.6%
655362 19.0% 19.4% 17.7%

2621442 23.0% 24.9% 20.6%

Zoltan’s local data ordering
enabled 13-25% reduction in

overall execution time in finite
volume climate code FV-MAS.

Courtesy of Michael Wolf, SNL.

9

Zoltan Graph Coloring

  Assign colors (labels) to vertices such that neighboring
vertices have different colors.

  Parallel distance-1, distance-2 and partial distance-2 graph
coloring.
  Finding independent sets and concurrent computations (e.g., for

multithreaded operations)
  Efficient Jacobian and Hessian calculations (by identifying

structurally orthogonal representations of matrices)

10

Graph-based
decomposition

Geometric
decomposition

Zoltan_Comm_Do

Zoltan_Comm_Do_Reverse

Zoltan Unstructured
Communication Package

  Simple primitives for efficient irregular communication.
  Zoltan_Comm_Create: Generates communication plan.

•  Processors and amount of data to send and receive.
  Zoltan_Comm_Do: Send data using plan.

•  Can reuse plan. (Same plan, different data.)
  Zoltan_Comm_Do_Reverse: Inverse communication.

  Used for most communication in Zoltan.
  Exposed through API for application use.

11

  Allows applications to locate off-processor data.
  Rendezvous algorithm (Pinar, 2001).
  Directory distributed in known way (hashing) across processors.
  Requests for object location

sent to processor storing
the object’s directory entry.

  Used in finite element and
particle-in-cell codes (e.g., Aleph)
to determine communication
patterns.

A B C
0 1 0

D E F
2 1 0

G H I
1 2 1

Processor 0 Processor 1 Processor 2

Directory Index 
 Location 

Zoltan Distributed
Data Directory

A F

C

B

E

I

G H
D

Processor 0

Processor 1

Processor 2

12

Zoltan Software

  Open-source software under LGPL license.
  http://www.cs.sandia.gov/Zoltan

  Callback-function API:
  Separates application data from Zoltan data
  Easy to use for applications; no complicated data structures to

build
  Allows use of Zoltan in wide-range of applications

  Interfaces:
  C, C++, Fortran90
  Matrix-based interface through Trilinos
  Mesh-based interface through ITAPS

13

Trilinos provides building
blocks for application

development and research.

Numerical math
Convert to models that
can be solved on digital

computers

Algorithms
Find faster and more
efficient ways to solve

numerical models

L(u)=f
Math. model

Lh(uh)=fh
Numerical model

uh=Lh
-1 fh

Algorithms

physics

computation

Linear
Nonlinear

Eigenvalues
Optimization

Automatic diff.
Domain dec.

Mortar methods

Time domain
Space domain

Matrix/Vector
Utilities

Interfaces
Load Balancing

solvers

discretizations methods

core

FASTMath contacts for Trilinos:
 Andy Salinger (agsalin@sandia.gov)
 Jonathan Hu (jhu@sandia.gov)

14

Trilinos
Software Infrastructure

  Trilinos Capabilities Areas:
  Discretizations  Scalable Linear Algebra
  Linear & Eigen Solvers  Meshes & Load Balancing
  Nonlinear, Transient & Optimization Solvers
  Scalable I/O
  Software Engineering Technologies & Integration
  Testing, Tools & Interfaces

  Trilinos is NOT a single monolithic piece of software.
  Capabilities distributed in individual “packages.”
  Any collection of packages can be combined.
  Applications don’t need all of Trilinos to get things done.

15

For more information…

  Zoltan website: http://www.cs.sandia.gov/Zoltan
  Download Zoltan as part of Trilinos or as stand-alone library.

  Trilinos website: http://trilinos.sandia.gov

  Annual Forums:
  DOE ACTS Tutorial (3rd week in August) at LBL.
  Annual Trilinos User Group Meeting in November at SNL.

16

17

Trilinos Core Packages

Objective Packages

Parallel/serial Matrix/
Vector classes

Epetra: production-ready; C++; double-precision
Tpetra: next-generation C++; templated scalar & ordinal types
Kokkos: multicore/GPU node description and operators

Interfaces Thyra: Abstract interfaces to linear algebra
Stratimikos: Abstract problem description
FEI, Shards: Finite-element interfaces

Load Balancing,
Ordering, Coloring

Zoltan: suite of combinatorial algorithms
Isorropia: Epetra interface to Zoltan

“Skins” PyTrilinos: Python interfaces using SWIG
WebTrilinos: Web-based interface for testing, experimentation
ForTrilinos: Fortran interface
Ctrilinos: C wrappers

C++ utilities Teuchos: Timers, parameter lists, reference-counted pointers;
LAPACK/BLAS wrappers
EpetraExt: transforms; matrix-matrix multiply; transpose
Triutils: I/O with common matrix formats

18

Trilinos Discretizations
and Methods

Objective Package(s)

Mesh management STKMesh: Flexible mesh database
Pamgen: In-line mesh generation
Mesquite: Mesh-quality improvement; r-refinement

Discretization Intrepid: discretization for general FEM, FV, & FD cell types
Sundance: Finite element method; declarative programming
Phalanx: Field-evaluation kernel

Time Integration Rythmos: backward/forward Euler, Runge-Kutta, BFD
Automatic
differentiation

Sacado: AD at element level via templating; forward/reverse/Taylor-
polynomial modes

Mortar methods Moertel: nonconforming mesh tying and contact formulations

19

Trilinos Solvers
 Objective Package(s)

Iterative linear solvers AztecOO: Krylov subspace solvers: CG, GMRES, Bi-
CGSTAB; Incomplete factorization preconditioners
Belos: Block-based solvers; recycling solvers; templated C++
Komplex: solves complex-valued linear systems via
equivalent real-valued systems

Direct sparse linear solvers Amesos/Amesos2: Interface to direct solvers KLU,
UMFPACK, SuperLU, MUMPS, ScaLAPACK

Direct dense linear solvers Epetra, Teuchos, Pliris
Iterative eigenvalue solvers Anasazi: Block-based Krylov-Schur, Davidson, LOBPCG
ILU-type preconditioners AztecOO

IFPACK/Ifpack2: Overlapping Schwarz
Multilevel preconditioners ML: Smoothed aggregation; multigrid; domain decomposition
Block preconditioners Meros, Teko: for coupled simultaneous solution variables
Nonlinear system solvers NOX: Broyden, Newton, Tensor methods

LOCA: Continuation algorithms
Optimization (SAND) MOOCHO, Aristos: Reduced and full-space SQP

TriKota: Interface to DAKOTA toolkit
Stochastic PDEs Stokhos: intrusive stochastic Galerkin uncertainty quantification

20 Full Vertical
Solver Coverage

Bifurcation Analysis
 LOCA

DAEs/ODEs:

Transient Problems

Rythmos

Eigen Problems:

Linear Equations:

 Linear Problems

AztecOO

Belos

Ifpack, ML, etc...

Anasazi

Vector Problems:

Matrix/Graph Equations:

Distributed Linear Algebra
 Epetra

Tpetra

Optimization

MOOCHO

Unconstrained:

Constrained:

Nonlinear Problems
 NOX
Se
ns

iti
vi

tie
s

(A
ut

om
at

ic
 D

iff
er

en
tia

tio
n:

 S
ac

ad
o)

Kokkos

