

The Zoltan Toolkit

Karen Devine

Scalable Algorithms Department Sandia National Laboratories

FASTMath SciDAC Institute

The Zoltan Toolkit

Library of parallel combinatorial algorithms for unstructured, dynamic and/or adaptive computations.

Graph Coloring

Data Migration

Matrix Ordering

Unstructured Communication

Distributed Data Directories

A	В	С	D	Е	F	G	Н	1
0	1	0	2	1	0	1	2	1

Zoltan's Use in Applications

Data-structure neutral design supports many different applications.

Adaptive mesh refinement

Zoltan's use in large-scale experiments and simulations

Partitioning Method	Application	Problem Size	Number of Processes	Number of Parts	Architecture	Source
Graph	PHASTA CFD	34M elements	16K	16K	BG/P	Zhou, et al., RPI
Hypergraph	PHASTA CFD	1B elements	4096	280K	Cray XT/5	Zhou, et al., RPI
Hypergraph	Sparta LB algorithms	800M zones	8192	262K	Hera (AMD Quadcore)	Lewis, LLNL
Geometric	Pic3P particle-in-cell	5B particles	24K	24K	Cray XT/4	Candel, et al., SLAC
Geometric	MPSalsa CFD	208M nodes	12K	12K	RedStorm	Lin, SNL
Geometric	Trilinos/ML Multigrid in ALEGRA shock physics	24.6M rows 1.2B non- zeros	24K	24K	RedStorm	Hu, et al., SNL

Partitioning and Load Balancing

- Assignment of application data to processors for parallel computation.
- Applied to grid points, elements, matrix rows, particles, ...
- Trade-offs in partitioning and load-balancing algorithms:
 - Quality vs. speed.
 - Geometric locality vs. data dependencies.
 - High-data movement costs vs. tolerance for remapping.

Zoltan's Suite of Partitioning Algorithms

- Geometric methods: Partition based on geometric locality.
 - Parts contain objects that are physically close to each other.
 - Useful for particle methods, adaptive mesh refinement, visualization, contact detection, crash simulations, specialized geometries

Zoltan's geometric partitioning in SLAC's PIC3P enabled solution of large particle-based problems (24k CPUs, 750M DOFs, 5B particles). Courtesy of Arno Candel, SLAC, 2009.

Zoltan's Suite of Partitioning Algorithms

- Topology-based methods: Partition based on connectivity.
 - Parts contain objects that depend on each other.
 - Graph and hypergraph partitioning methods.
 - Useful for matrices, networks, meshes, multiphysics, irregular data.

Number of cores	Time (s)	Efficiency	
16 k	222.03	1	
32 k	112.43	0.987	
64 k	57.09	0.972	
128 k	31.35	0.885	

Zoltan's topology-based methods helped achieve strong scalability beyond 128K cores (BG/P) for CFD code PHASTA.

Courtesy of Mark Shephard, RPI.

Zoltan Ordering

- Global ordering produces fill-reducing permutations for sparse matrix factorization.
 - ◆ Interfaces to PT-Scotch (Pellegrini, Chevalier; INRIA-LaBRi) and ParMETIS (Karypis et al.; U. Minnesota)

- Local ordering improves cache utilization.
 - Space-filling curve ordering of in-processor data.

Zoltan's local data ordering enabled 13-25% reduction in overall execution time in finite volume climate code FV-MAS. Courtesy of Michael Wolf, SNL.

Grid size	Reorder cells	Reorder cells & edges	Reorder cells, edges & vertices
163842	13.4%	14.8%	15.6%
655362	19.0%	19.4%	17.7%
2621442	23.0%	24.9%	20.6%

Zoltan Graph Coloring

- Assign colors (labels) to vertices such that neighboring vertices have different colors.
- Parallel distance-1, distance-2 and partial distance-2 graph coloring.
 - Finding independent sets and concurrent computations (e.g., for multithreaded operations)
 - Efficient Jacobian and Hessian calculations (by identifying structurally orthogonal representations of matrices)

Zoltan Unstructured Communication Package

- Simple primitives for efficient irregular communication.
 - Zoltan_Comm_Create: Generates communication plan.
 - Processors and amount of data to send and receive.
 - Zoltan_Comm_Do: Send data using plan.
 - Can reuse plan. (Same plan, different data.)
 - Zoltan_Comm_Do_Reverse: Inverse communication.
- Used for most communication in Zoltan.
- Exposed through API for application use.

Zoltan Distributed Data Directory

- Allows applications to locate off-processor data.
- Rendezvous algorithm (Pinar, 2001).
 - Directory distributed in known way (hashing) across processors.
 - Requests for object location sent to processor storing the object's directory entry.
- Used in finite element and particle-in-cell codes (e.g., Aleph) to determine communication patterns.

	G	Н	-1			
	1	2	1			
Processor 2						

Zoltan Software

- Open-source software under LGPL license.
 - http://www.cs.sandia.gov/Zoltan
- Callback-function API:
 - Separates application data from Zoltan data
 - Easy to use for applications; no complicated data structures to build
 - Allows use of Zoltan in wide-range of applications
- Interfaces:
 - C, C++, Fortran90
 - Matrix-based interface through Trilinos
 - Mesh-based interface through ITAPS

Trilinos provides building blocks for application development and research.

Numerical math

Convert to models that can be solved on digital computers

Algorithms

Find faster and more efficient ways to solve numerical models

discretizations

Time domain Space domain

methods

Automatic diff.

Domain dec.

Mortar methods

solvers Tribinos

Linear Nonlinear Eigenvalues Optimization Matrix/Vector
Utilities
Interfaces
Load Balancing

FASTMath contacts for Trilinos:
Andy Salinger (agsalin@sandia.gov)
Jonathan Hu (jhu@sandia.gov)

Trilinos Software Infrastructure

- Trilinos Capabilities Areas:
 - Discretizations
 - Linear & Eigen Solvers

- Scalable Linear Algebra
- Meshes & Load Balancing
- Nonlinear, Transient & Optimization Solvers
- Scalable I/O
- Software Engineering Technologies & Integration
- Testing, Tools & Interfaces
- Trilinos is NOT a single monolithic piece of software.
 - Capabilities distributed in individual "packages."
 - Any collection of packages can be combined.
 - Applications don't need all of Trilinos to get things done.

For more information...

- Zoltan website: http://www.cs.sandia.gov/Zoltan
 - Download Zoltan as part of Trilinos or as stand-alone library.
- Trilinos website: http://trilinos.sandia.gov
- Annual Forums:
 - ◆ DOE ACTS Tutorial (3rd week in August) at LBL.
 - Annual Trilinos User Group Meeting in November at SNL.

Trilinos Core Packages

Objective	Packages
Parallel/serial Matrix/ Vector classes	Epetra: production-ready; C++; double-precision Tpetra: next-generation C++; templated scalar & ordinal types Kokkos: multicore/GPU node description and operators
Interfaces	Thyra: Abstract interfaces to linear algebra Stratimikos: Abstract problem description FEI, Shards: Finite-element interfaces
Load Balancing, Ordering, Coloring	Zoltan: suite of combinatorial algorithms Isorropia: Epetra interface to Zoltan
"Skins"	PyTrilinos: Python interfaces using SWIG WebTrilinos: Web-based interface for testing, experimentation ForTrilinos: Fortran interface Ctrilinos: C wrappers
C++ utilities	Teuchos: Timers, parameter lists, reference-counted pointers; LAPACK/BLAS wrappers EpetraExt: transforms; matrix-matrix multiply; transpose Triutils: I/O with common matrix formats

Trilinos Discretizations and Methods

Objective	Package(s)			
Mesh management	STKMesh: Flexible mesh database			
	Pamgen: In-line mesh generation			
	Mesquite: Mesh-quality improvement; r-refinement			
Discretization	Intrepid: discretization for general FEM, FV, & FD cell types			
	Sundance: Finite element method; declarative programming			
	Phalanx: Field-evaluation kernel			
Time Integration	Rythmos: backward/forward Euler, Runge-Kutta, BFD			
Automatic differentiation	Sacado: AD at element level via templating; forward/reverse/Taylor-polynomial modes			
Mortar methods	Moertel: nonconforming mesh tying and contact formulations			

Trilinos Solvers

Objective	Package(s)		
Iterative linear solvers	AztecOO: Krylov subspace solvers: CG, GMRES, Bi-CGSTAB; Incomplete factorization preconditioners		
	Belos: Block-based solvers; recycling solvers; templated C++		
	Komplex: solves complex-valued linear systems via equivalent real-valued systems		
Direct sparse linear solvers	Amesos/Amesos2: Interface to direct solvers KLU, UMFPACK, SuperLU, MUMPS, ScaLAPACK		
Direct dense linear solvers	Epetra, Teuchos, Pliris		
Iterative eigenvalue solvers	Anasazi: Block-based Krylov-Schur, Davidson, LOBPCG		
ILU-type preconditioners	AztecOO		
	IFPACK/Ifpack2: Overlapping Schwarz		
Multilevel preconditioners	ML: Smoothed aggregation; multigrid; domain decomposition		
Block preconditioners	Meros, Teko: for coupled simultaneous solution variables		
Nonlinear system solvers	NOX: Broyden, Newton, Tensor methods		
	LOCA: Continuation algorithms		
Optimization (SAND)	MOOCHO, Aristos: Reduced and full-space SQP		
	TriKota: Interface to DAKOTA toolkit		
Stochastic PDEs	Stokhos: intrusive stochastic Galerkin uncertainty quantification		

Optimization Unconstrained: Constrained:	Find $u \in \Re^n$ that minimizes $g(u)$ Find $x \in \Re^m$ and $u \in \Re^n$ that minimizes $g(x,u)$ s.t. $f(x,u)=0$	acado)	МООСНО
Bifurcation Analysis	Given nonlinear operator $F(x,u) \in \Re^{n+m}$ - For $F(x,u) = 0$ find space $u \in U \ni \frac{\partial F}{\partial x}$ s	J: Տ	LOCA
Transient Problems DAEs/ODEs:	Solve $f(\dot{x}(t), x(t), t) = 0$ $t \in [0, T], x(0) = x_0, \dot{x}(0) = x_0'$ for $x(t) \in \Re^n, t \in [0, T]$	ensitivities Differentiation	Rythmos
Nonlinear Problems	Given nonlinear operator $F(x) \in \Re^m \to \Re$ Solve $F(x) = 0$ $x \in \Re^n$	Sensiatic Differ	NOX
Linear Problems Linear Equations: Eigen Problems:	Given Linear Ops (Matrices) $A, B \in \Re^{m \times n}$ Solve $Ax = b$ for $x \in \Re^n$ Solve $A\nu = \lambda B\nu$ for (all) $\nu \in \Re^n$, $\lambda \in$	(Automa	AztecOO Belos Ifpack, ML, etc Anasazi
Distributed Linear Algebra Matrix/Graph Equations Vector Problems:	Compute $y = Ax$; $A = A(G)$; $A \in \Re^{m \times n}$, $G \in \mathbb{R}^m$ Compute $y = \alpha x + \beta w$; $\alpha = \langle x, y \rangle$; $x, y \in \Re^m$		Epetra Tpetra Kokkos