SciDAC-3 Institute for Sustained Performance, Energy, and Resilience

Bob Lucas
University of Southern California
Sept 23, 2011

SciDAC

Scientific Discovery through Advanced Computation

DOE Office of Science's program for trans-petascale computational science

Maximizing performance is getting increasingly difficult:

Systems are more complicated
O(100K) multi-core CPUs
GPU accelerators
Codes are more complicated
Multi-disciplinary
Multi-scale

BeamBeam3D accelerator modeling

SciDAC Performance Efforts

SciDAC has always had an effort focused on performance

Performance Evaluation Research Center (PERC)

Benchmarking, modeling, and understanding

Performance Engineering Research Institute (PERI)

Performance engineering, modeling, and engagement

Three SciDAC-e projects

Institute for Sustained Performance, Energy, and Resilience (SUPER)

Performance engineering

Energy minimization

Resilient applications

SUPER Team

USC

Broadly Based Effort

Twenty-seven people at the kick-off meeting

University of Oregon, Sept 20-21

Not everybody made it

All PIs have independent research projects

SUPER money alone isn't enough to support any of its investigators SUPER leverages other work and funding

SUPER contribution is integration, results beyond any one group

Follows successful PERI model (tiger teams and autotuning)

Collaboration extends to others having similar research goals

Already talking to LANL and Rice (both were invited to our meeting at Oregon) Other likely collaborators include PNNL, Portland State, and UT San Antonio Perhaps Juelich and Barcelona too?

Management Structure

Overall management

Bob Lucas and David Bailey

Distributed leadership of research

Follows PERI model, adapts as needed

Weekly project teleconferences

Wednesdays, noon Eastern

All hands every four weeks (management and planning)

Technically focused otherwise

Regular face-to-face project meetings

Monday mornings at SC

All hands, twice per year, each institution takes a turn hosting Allows students and staff to attend at least once

SUPER Meeting Schedule

Oregon Sept. 21-22, 2011

UNC RENCI March 29-30, 2012

ANL Sept. 2012

UTK ICL March 2013

LBNL Sept. 2013

Utah Feb. 2014

Maryland Sept. 2014

UCSD SDSC March 2015

ORNL Sept. 2016

USC ISI March 2017

SUPER Objectives

Automatic performance tuning
Energy minimization
Resilient computing
Optimization of the above

Application engagement
Tool integration
Outreach and tutorials

Performance Engineering (1)

Measurement and monitoring

Adopting University of Oregon's TAU system

Still plan to collaborate with Rice and its HPCToolkit

Performance Database

Extending TAU's PerfDMF to enable online collection and analysis

Performance modeling

PBound and Roofline models to bound performance expectations

MIAMI to model impact of architectural variation

PSINS to model communication

Performance Engineering (2)

Automatic tuning for performance portability

Led by Mary Hall, University of Utah

Extend PERI autotuning system for future architectures

New TAU front-end for triage

CUDA-CHILL to target GPUs

OpenMP-CHiLL for SMP multicores

Active Harmony provides search engine

Drive empirical autotuning experimentation

Balance threads and MPI ranks in hybrids of OpenMP and MPI

Extend to surface/area to volume, or halo size, experiments

Targeted Autotuning

Similar in spirit to Domain Specific Langauges Users write simple code and leave the tuning to us

Whole program autotuning

Parameters, algorithm choice, libraries linked, etc.

The SUPER Autotuning Framework

First PERI Autotuning Success SMG2000

SMG2000: Semicoarsening multigrid code, used for various applications, including modeling of groundwater diffusion.

PERI researchers integrated several tools, then developed a "smart" search technique to find an optimal tuning strategy among 581 million different choices.

Achieved 2.37X performance improvement on one key kernel.

Achieved 27% overall performance improvement.

Autotuning the central SMG2000 kernel

Outlined code (from ROSE outliner)

CHiLL transformation recipe

```
permute([2,3,1,4])
tile(0,4,TI)
tile(0,3,TJ)
tile(0,3,TK)
unroll(0,6,US)
unroll(0,7,U)
Scientific Discovery
```

Constraints on search

 $0 \le TI$, TJ, $TK \le 122$ $0 \le UI \le 16$ $0 \le US \le 10$ compilers $\subseteq \{gcc, icc\}$ **Search space:** $122^3x16x10x2 = 581,071,360$ points

SUPER

Early Result from PERI

Parallel search evaluates 490 points and converges in 20 steps

SUPER

Autotuning the triangular solve kernel of the Nek5000 turbulence code

Compiler	Original	Active Harmony			Exhaustive		
	Time	Time	(u1,u2)	Speedup	Time	(u1,u2)	Speedup
pathscale	0.58	0.32	(3,11)	1.81	0.30	(3,15)	1.93
gnu	0.71	0.47	(5,13)	1.51	0.46	(5,7)	1.54
pgi	0.90	0.53	(5,3)	1.70	0.53	(5,3)	1.70
cray	1.13	0.70	(15,5)	1.61	0.69	(15,15)	1.63

Energy Minimization

Led by Laura Carrington, University of California at San Diego Develop new energy aware APIs for users

I know the processor on the critical path in my multifrontal code

Obtain more precise data regarding energy consumption

Extend PAPI to sample hardware monitors

Build new generation of PowerMon devices

Extend performance models

Transform codes to minimize energy consumption

Inform systems to allow them to exploit DVFS

Early Result from PERI

Use PERI automated performance modeling tools to automate DVFS in HPC applications to reduce energy consumption

Working to combine this DVFS work with existing PERI auto-tuning framework and Active Harmony, to search application space for optimal energy delay product

Resilient Computing

Led by Bronis de Supinski, Livermore National Laboratory Novel idea for automating vulnerability assessment

Modeled on success of PERI autotuning

Conduct fault injection experiments

Determine which code regions or data structures fail catastrophically

Determine what transformations enable them to survive

Extend ROSE compiler to implement the transformations

Investigate directive-based API for users

Augments empirically derived vulnerability assessment.

Optimization

Led by Paul Hovland, Argonne National Laboratory

Performance, energy, and resilience are implicitly related and require simultaneous optimization

E.g., Processor pairing covers soft errors, but halves throughput

Results in a stochastic, mixed integer, nonlinear, multi-objective, global optimization problem

Only sample small portion of search space:

Requires efficient derivative-free numerical optimization algorithms

Need to adapt algorithms from continuous to discrete autotuning domain

Application Engagement

Led by Pat Worley, Oak Ridge National Laboratory PERI strategy was proactively identify application collaborators

Based on comprehensive survey at beginning of SciDAC-2 Exploited proximity and long-term relationships

SUPER strategy is to broaden our reach

Key is partnering with staff at ALCF, OLCF, and NERSC Augment PerfDMF with IPM and other data from centers Have already begun initial outreach to NERSC

Collaborate with other SciDAC-3 institutes Focused engagement as requested by DOE

PERI Engagement Impact

LBHMD (lattice Boltzmann) and GTC (plasma toroidal):

LBMHD: Up to 3X speedup via autotuning.

GTC: Up to 1.77X speedup via autotuning.

S3D (combustion):

12.7% overall performance improvement.

762,000 CPU-hours are potentially saved each year.

PFLOTRAN (subsurface reactive flows):

2X speedup on two key PETSc routines via autotuning.

40X speedup in initialization; 4X improvement in I/O stage; overall 5X.

Nek5000 (turbulence):

Up to 1.93X speedup.

LS3DF (electronic structure):

Increased scalability from 1000-2000 to over 160,000 cores.

New Application: LS3DF

LS3DF: "linearly scaling 3-dimensional fragment" code for electronic structure calculation.

Developed at LBNL by Lin-Wang Wang and several collaborators.

Numerous applications in materials science and nanoscience.

Employs a novel divide-and-conquer scheme including a new approach for patching the fragments together.

Achieves nearly linear scaling in *computational cost versus size of problem*, compared with n^3 scaling in many other comparable codes.

Potential for nearly linear scaling in performance versus number of cores.

Challenge:

Initial implementation of LS3DF had disappointingly low performance and parallel scalability.

Performance Analysis of LS3DF

LBNL researchers (funded through PERI) applied performance monitoring tools to analyze run-time performance of LS3DF. Key issues uncovered:

Limited concurrency in a key step, resulting in a significant load imbalance between processors.

Solution: Modify code for two-dimensional parallelism.

Costly file I/O operations were used for data communication between processors.

Solution: Replace all file I/O operations with MPI send-receive operations.

Resulting performance of LS3DF

135 Tflops/s on 36,864 cores of the Cray XT4 Franklin system at LBNL.

40% efficiency on 36,864 cores.

224 Tflops/s on 163,840 processors of the BlueGene/P Intrepid system at Argonne Natl. Lab.

40% efficiency on 163,840 cores.

442 Tflops/s on 147,456 processors of the Cray XT5 Jaguar system at Oak Ridge Natl. Lab.

33% efficiency on 147,456 cores.

2008 ACM Gordon Bell Prize in a special category for "algorithm innovation."

SUPER

Near-Linear Scaling to 163,840 Cores

Tool Integration

Led by Al Maloney, University of Oregon
TAU replaces HPCToolkit as primary triage tool
PerfDMF replaces PERI performance database
New tools to enable performance portability
CUDA-CHiLL and OpenMP-CHiLL
PAPI GPU

Integration of autotuning framework and TAUmon

Enable online autotuning

Already using online binary patch for empirical tuning experiments

Outreach and Tutorials

Led by David Bailey, Lawrence Berkeley National Laboratory
We will not provide training workshops as did SciDAC-2 CScADS
We will offering training to ALCF, OLCF, and NERSC staff
Enables limited deployment of our research artifacts
We will organize tutorials for end users of our tools
Offer them at widely attended forums such as SC11
UTK is standing up a SUPER Web site

Outreach to SciDAC-3 Institutes

PERI was directed not to work with math and CS institutes
Instead, focused on JOULE or applications of importance to DOE SC
Even though math libraries have very broad impact

PERI nevertheless found itself tuning math libraries E.g., PETSc kernels are computational bottlenecks in PFLOTRAN

SUPER needs new code to focus on beyond SciDAC-e SciDAC-3 applications won't be known for many months

Initial effort with NNSA and ParaDiS

What else can we do together?

Summary

Research worthy of DOE SC ASCR

Automatic performance tuning
New focus on portability
Addressing the "known unknowns"
Energy minimization
Resilient computing
Optimization of the above

Near-term impact on DOE computational science applications Application engagement coordinated with ALCF, NLCF, and NERSC Tool integration, making research artifacts more approachable Outreach and tutorials

