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= Algorithms to solve ODEs, DAEs, PDEs: 3/ (t) = f(t,y(t)), to <t < T, y(to) = o
= Time stepping algorithms: Runge-Kutta, linear multistep, general linear schemes

= Partitioned methods for particular systems: Implicit-Explicit (IMEX or semi-implicit),
multirate (resolve multiple scales)

= No one-method-fits-all, need to consider problem characteristics (stiffness,
conservation, smoothness, geometry), computational architecture

= Optimize methods: stability and accuracy

= Augment schemes with error estimators, step controllers, predictors,
preconditioners

= |mplementation in PETSc library
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Accuracy:

= Problem: ¥'(t) = f(t,y(t)) elementary derivatives:
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= E.g., Runge-Kutta: ynt1= uyn+ALY ;. bif (Vi) = f'F
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Order conditions: Zbi =1, Zbi%‘ =5
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= QOrder conditions “form” a noncommutative
algebraic group:
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= High order methods are typically more robust ——>

= Perturbed asymptotic expansions may be needed
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Hopf algebras, Feynman graphs, and renormalization: Brouder C. (2000) Runge—Kutta methods and
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Symplecticity: T
= Condition:  bjaij + bjaz = bb; Stormer-Verlet as Runge-Kutta
Problem: qd= f(q) 0l 0 0 1/2|1/2 0
A / 1]1/2 12 1/2|1/2 0
Stormer-Verlet: p,.;/0 = pn + 7f(qn) 12 1/2 /2 1/2
Gn+1 = qn + Atpn—i—l/Q
At 1 1
Pn+1 = Ppy1/2 T 7f(%+1) {Q7p}[n+1] = @2Atf(.)eAtp€2Atf(.){q,p}[n]
Stability:
= Consider the IVP: y'(t) = F(t,y(t)), to <t <T, y(to) = yo
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explicit Euler

= Linear stability
analysis:

= E.g, forward Euler:  Unt1 = (1 + AA)yy, A\Z_A N C\S
A\ - _J/ 1+ t 4
R(z)=1+z o i
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Optimal methods

= Formulate the method design as a mathematical programming problem: search for the
global optimum set of coefficients that define the search criteria: nonlinear
multiobjective optimization problem:

e Stability
min A(1-2(T) Y6 w(T) + 80001, r(Te) =p+1

subject to ij\lf(ﬁ,) = 1/~v(Tp)
|R(agAAt)| <1, A €[-fs,0]

= Global optimization [BARON] allows
construction of families of methods — Pareto

surface

= Stability region (SR) leads to a semi-infinite program: max
yree ( ) prog IR(VA,e)ISLVWG[O,B]B
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Final remarks

1. Perform stability analysis to obtain algebraic constraints — how large the time
step can be, augmented criterion that includes the acceptance rate and force
calculation costs == [Balint et al.] limits have been identified, more d.o.f. may

provide relief.

2. Analyze stiffness effects by perturbed expansion analyses — estimate/eliminate
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large error constants and stability issues 10
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3. Develop time adaptivity by using reversible step size controllers — reduce
computational cost. Controller/error estimators are inexpensive == experiments

exhibited a loss of symplectic properties. Identify and solve the problem.

4. Use all this machinery to develop new optimal methods via global optimization
algorithms and implement in Chroma/PETSc.
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