Hamiltonian MD in LQCD

Bálint Joó, Jefferson Lab

FASTMath-USQCD-SUPER Workshop LLNL Nov 10, 2011

Hybrid MDMC methods in LQCD

- MC Simulations are the only realistic way to 'solve' QCD.
- Need to update every degree of freedom (every lattice link)
- Most basic: update a link, and then Accept/Reject

$$P_{\rm acc}(U' \leftarrow U) = \min\left(1, e^{-\Delta S}\right) \ \Delta S = S(U') - S(U)$$

• Fermion determinant is a 'global' weight and involves solving a linear system:

$$\int \mathcal{D}U \, \det(\mathcal{M}) e^{-S_g(U)} = \int \mathcal{D}U \, d\phi \, d\phi^{\dagger} \, e^{-S_g(U) - \phi^{\dagger} \mathcal{M}^{-1} \phi}$$

- With O(100M) degrees of freedom updating links one by one is too costly.
- MD allows 'global updating' (all links at once). Energy conservation keeps acceptance rate high.

Hybrid Monte Carlo

- For each link $U_{\mu,x}$ pick conjugate momenta: $\pi_{\mu,x}$ from heatbath
- Hamiltonian

$$H = \frac{1}{2}\pi^2 + S(U)$$

- MD evolution for some 'time': propose U'
- Accept/Reject

$$P_{\rm acc}(U' \leftarrow U) = \min\left(1, e^{-\Delta H}\right)$$

- If U' is rejected, U is next configuration
- For detailed balance: MD must be reversible and area preserving
- Symplecticity is sufficient for area preservation.

S. Duane, A. D. Kennedy, B. J. Pendleton, D. Roweth, Phys. Lett. B. vol 195, No 2, 216-222

Typical MD Integrators in LQCD

- Time symmetric combinations of symplectic pieces:
 - Leap Frog:

$$U_{PQP}(\tau) = \left(e^{(1/2)\hat{S}\delta\tau} e^{\hat{T}\delta\tau} e^{(1/2)\hat{S}\delta\tau}\right)^{\tau/\delta\tau}$$

- 2nd order Minimum Norm:

$$U_{PQP}(\tau) = \left(e^{\lambda \hat{S}\delta\tau} e^{(1/2)\hat{T}\delta\tau} e^{(1-2\lambda)\hat{S}\delta\tau} e^{(1/2)\hat{T}\delta\tau} e^{\lambda \hat{S}\delta\tau}\right)^{\tau/\delta\tau}$$

- 'Truncation error' given by BCH expansion.

Higher Order Integrators

- Creutz, Gocksch, Campostrini: M. Creutz, A. Gocksch, Phys. Rev. Lett, 63, p 9-12, 1989
 - complicated series of forward/backward steps to cancel
 errors at 2nd order:
 M. Campostrini, P. Rossi, Nucl. Phys. B, 329:753, 1990

$$U_{2k+2}(\delta\tau) = U_{2k}(b_1\delta\tau) \ U_{2k}(b_2\delta\tau) \ U_{2k}(b_1\delta\tau)$$

$$b_1 = \frac{1}{2 - 2^{1/(2k+1)}}$$

$$b_2 = 1 - 2b_1$$

- Minimum Norm:
 - 4 & 5 Force evaluation variants
 - Tunable parameters: $\lambda, \varrho, \theta, \mu$

Tetsuya Takaishi¹ and Philippe de Forcrand

Phys. Rev. E 73, 036706 (2006)

$$U(\delta\tau) = e^{\theta\delta\tau\hat{S}} e^{\rho\delta\tau\hat{T}} e^{\lambda\delta\tau\hat{S}} e^{\mu\delta\tau\hat{T}}$$

$$e^{(1/2)(1-2(\lambda+\theta))\delta\tau\hat{S}}$$

$$e^{(1-2(\mu+\rho)\delta\tau\hat{T}}$$

$$e^{(1/2)(1-2(\lambda+\theta))\delta\tau\hat{S}}$$

$$e^{(1/2)(1-2(\lambda+\theta))\delta\tau\hat{S}}$$

$$e^{\mu\delta\tau\hat{T}} e^{\lambda\delta\tau\hat{S}} e^{\rho\delta\tau\hat{T}} e^{\theta\delta\tau\hat{S}}$$

Multiple Time Steps

• Consider action: S = S0 + S1

$$U_0(\delta \tau) = e^{(1/2)\delta \tau_0 \hat{S}_0} e^{\delta \tau_0 \hat{T}} e^{(1/2)\delta \tau_0 \hat{S}_0}$$

• Then to integrate S, define recursively:

$$U_1(\delta \tau_1) = e^{(1/2)\delta \tau_1 \hat{S}_1} \ U_0 \left(\frac{\delta \tau_1}{N}\right)^N e^{(1/2)\delta \tau_1 \hat{S}_1}$$

- Two time scales: $\delta \tau_1$ and $\delta \tau_1/N$
- Generalize to multiple time-scales/levels
- Can nest more sophisticated integrators than just leapfrog

Shadow Hamiltonian

- These integrators actually conserve exactly a Shadow Hamiltonian.
- Defined as an asymptotic (Baker-Campbell-Haussdorff) expansion

$$\begin{split} \tilde{H}_{\text{PQPQP}} &= H + \left(\frac{6\lambda^2 - 6\lambda + 1}{12} \{S, \{S, T\}\} + \frac{1 - 6\lambda}{24} \{T, \{S, T\}\}\right) \delta \tau^2 + \left(\frac{-1 + 30\lambda^2 - 60\lambda^3 + 30\lambda^4}{720}\right) \\ &\times \{S, \{S, \{S, \{S, T\}\}\}\} + \frac{-4 + 15\lambda + 15\lambda^2 - 30\lambda^3}{720} \{T, \{S, \{S, T\}\}\}\} + \frac{-7 + 30\lambda}{1440} \\ &\times \{T, \{T, \{S, \{S, T\}\}\}\}\} + \frac{-7 + 30\lambda}{5760} \{T, \{T, \{T, \{S, T\}\}\}\}\} + \frac{-2 + 15\lambda - 35\lambda^2 + 30\lambda^3}{240} \\ &\times \{\{S, T\}, \{S, \{S, T\}\}\}\} + \frac{-2 + 15\lambda - 30\lambda^2}{720} \{\{S, T\}, \{T, \{S, T\}\}\}\} \delta \tau^4 + \mathcal{O}(\delta \tau^6). \end{split}$$

- Can measure 'Poisson Bracket' terms: {S,{S,T}}, {S, {S, {S, {S,T}}}} etc.
- BCH expansion generalizes to multi-level & higher order integrators (but gets very complicated)

Integrator Tuning

- Measure Poisson Bracket commutators
- Minimize Distance between H and its shadow, ie adjust step sizes, and λ -s so as to minimise

$$\sigma^2(\Delta H), \ \Delta H = \tilde{H} - H$$

• On average, this should be the closely related to (same as?)

$$\sigma^2(\delta H), \ \delta H = H(U', \pi') - H(U, \pi)$$

• PBs in LQCD are extensive, and should be fairly stable over a simulation (not like MD where they can fluctuate a lot)

Recent Results

- PB's allow prediction of acceptance rate as a function of step-size and tuning parameters
- A more systematic way of tuning than 'balancing forces'
- PBs allowed to improve an already well tuned set of parameters...

M. A. Clark¹, Bálint Joó², A. D. Kennedy³, and P. J. Silva⁴

Phys. Rev. D 84, 071502(R) (2011)

Force Gradient Integrator

- In MN Integrator choose $\lambda=1/6$, kill $\{T,\{S,T\}\}$ term at $O(\delta\tau^2)$
- Leaves $\{S,\{S,T\}\}\$ term at $O(\delta \tau^2)$ so called Force Gradient term
- Define Force Gradient Integrator

$$U_{PQP}(\delta\tau) = e^{(1/6)\hat{S}\delta\tau} e^{(1/2)\hat{T}\delta\tau}$$

$$e^{48\hat{S}\delta\tau - \{\hat{S},\{\hat{S},T\}\}\delta\tau^3/72}$$

$$e^{(1/2)\hat{T}\delta\tau} e^{(1/6)\hat{S}\delta\tau}$$

- This is a bona fide 4th order integrator
 - Campostrini: $(\delta \tau^4 / 34560)$ x (commutator terms)
 - Force Gradient: $(\delta \tau^4 / 155520)$ x (commutator terms)
- FG term ~ 2 force calculations (force + force of force), 5 in total
- Not much back tracking :-)

Hantao's Trick...

- Implementation: follow Horner scheme $a + bx + cx^2 = a + x(b + cx)$
- ► The force gradient step is similar

$$p_i \longleftarrow p_i - \frac{2}{3}\tau e_i(S) + \frac{1}{36}\tau^3 e^j(S)e_j e_i(S)$$

reproduced from from Hantao Yin's, Lattice 2011 contribution

• rewrite as $(F^j = e^j(S))$

$$p_i \longleftarrow p_i - \frac{2}{3}\tau \left(1 - \frac{1}{24}\tau^2 F^j e_j\right) e_i(S)$$

approximate it by (using Taylor expansion)

$$-\frac{2}{3}\tau \left(1 - \frac{1}{24}\tau^2 F^j e_j\right) e_i(S) = -\frac{2}{3}\tau \exp\left(-\frac{\tau^2}{24}F^j e_j\right) e_i(S) + \mathcal{O}(\tau^5)$$

Scaling Behaviour of FG for DWF

Tested with the following integration scheme on a $16^3 \times 32 \times 16$ lattice with 2+1 flavor DWF simulations, $m_{\pi} = 420 \text{MeV}$.

$$\underbrace{\det\left(\frac{m_{l}}{m_{s}}\right)}_{\text{top level}} \underbrace{\det\left(\frac{m_{s}}{1}\right)^{1/2} \det\left(\frac{m_{s}}{1}\right)^{1/2} \det\left(\frac{m_{s}}{1}\right)^{1/2}}_{\text{2nd level}} + \underbrace{\text{gauge field}}_{\text{3rd level}}$$

Figure: Scaling behavior Omelyan 2.44 ± 0.21 Force Gradient 4.16 ± 0.21

- ▶ With force gradient, the top level step size can be increased to 1/3 compared with 1/4 in Omelyan.
- With the first and last updaing step combined, force gradient PQPQP requires 3 CG inversion while Omelyan requires 2 each step.

reproduced from from Hantao Yin's, Lattice 2011 contribution

Costs: MD times

We are using this new integration scheme on our production job. The following shows a $16^3 \times 8 \times 48$ lattice with 160MeV pion

integrator	λ	step size	acc ratio	MD time(s)
Original	0.22	1/5	76/112=0.70	2.92e3
FG QPQPQ	N/A	1/7	75/88=0.85	1.95e3
Ome QPQPQ(top)	0.22	1/7	81/104=0.78	1.65e3
Ome QPQPQ(all)	0.22	1/7	88/122=0.72	1.60e3

► Except the original scheme, which has CG stopping condition 1e-8, all the rest have CG stopping condition 1e-6 for the quotient actions.

reproduced from from Hantao Yin's, Lattice 2011 contribution

FG Current Status

- In current tests, extra inversions cost in FG term could not be ameliorated by large enough step size
 - Well tuned 2nd order integrators were more efficient
 - but lattice sizes were quite small
 - Scaling:
 - O($V^{5/4}$) for 2nd order scheme
 - O($V^{9/8}$) for 4th order scheme
 - For sufficiently large lattice FG should win
 - In current study in the PRD paper, this volume is 56⁴ sites
 - May already work for our large 40³x256 lattices (?)

Shadow Hybrid Monte Carlo (SHMC)

- Proposed in Material Science
- In HMC: accept/reject with approximation to H_s
 - Now need to accept/reject momenta
 - Do MD using H
 - preserves H_s exactly
- Reweight with $exp(-(H-H_s))$
- Motivation in Material Science:
 - Real Hamiltonian
 - Lumpy phase space
 - H_s much more stable than H, easier to tune

JA Izaguirre, S. Hampton Journal of Computational Physics, vol 200 (2004), p 581-604

QCD and **SHMC**

- Can construct truncated Hs using PBs
 - In material science forward/ backward timestepping was used
- In QCD δH (and ΔH) is quite stable (unlike material science) since PBs are extensive
- In terms of PBs
 - tuning MD in HMC <=> tuning reweighting in SHMC
- Would there be any gain?

Adaptive Step Size

- Adaptive step size integrators are not symplectic usually. Need to be very careful not to loose area preservation.
- One particular technique tried by deForcrand and Takaishi.
- Algorithm by Stoffer, time symmetric step-size controller
- Problem: the step-size controller
 Es was not strongly correlated
 with ΔH which controls
 acceptance
- Overheads for variable step size method outweighed benefits compared to a fixed step-size at the same acceptance rate

Philippe de Forcrand and Tetsuya Takaishi

Phys. Rev. E 55, 3658-3663 (1997)

Perspectives

- Domain Science perspectives
 - Currently explored in Wilson and DWF systems
 - For production use, will need PBs for Wilson-Clover quarks
 - Test FG in large volume runs
 - Use PBs for Shadow HMC?
- Applied Math perspectives (conversation with Emil)
 - Stability & Stiffness Analysis, algorithm optimization
 - Variable time stepping with time symmetric controls
 - improve on the works of deForcrand and Takaishi
 - time step changing can provide insight on when to use higher order methods

Primaries

- External (to USQCD) collaborators: (originators)
 - Mike Clark (NVIDIA),
 - Tony Kennedy (University Edinburgh)
 - Paulo Silva (University of Coimbra)
- In USQCD
 - Balint Joo (PBs & FG with Chroma, for Clover)
 - Hantao Yin (FG for DWF in CPS?)
 - Kostas Orginos (Shadow Hamiltonian algorithms)
 - James Osborn, Rich Brower
- FastMATH
 - Emil Constantinescu (ANL) stability and stiffness analysis,
 improvements on variable step size techniques, tuning

