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Hybrid MDMC methods in LQCD
• MC Simulations are the only realistic way to ‘solve’ QCD.
• Need to update every degree of freedom (every lattice link)
• Most basic: update a link, and then Accept/Reject

• Fermion determinant is a ‘global’ weight and involves solving a 
linear system:

• With O(100M) degrees of freedom updating links one by one is 
too costly.

• MD allows ‘global updating’ (all links at once). Energy 
conservation keeps acceptance rate high.

Pacc(U � ← U) = min
�
1, e−∆S

�
∆S = S(U �)− S(U)

�
DU det (M)e−Sg(U) =

�
DU dφ dφ† e−Sg(U)−φ†M−1φ



Hybrid Monte Carlo
• For each link Uμ,x  pick conjugate momenta: πμ,x   from heatbath
• Hamiltonian

• MD evolution for some ‘time’:   propose  U’
• Accept/Reject 

• If U’ is rejected, U is next configuration
• For detailed balance: MD must be reversible and area preserving
• Symplecticity is sufficient for area preservation.

H =
1
2
π

2+S(U)

Pacc(U � ← U) = min
�
1, e−∆H

�

S. Duane, A. D. Kennedy, B. J. Pendleton, D. Roweth, Phys. Lett. B. vol 195, No 2, 216-222



Typical MD Integrators in LQCD
• Time symmetric combinations of symplectic pieces:

– Leap Frog: 

– 2nd order Minimum Norm:

– ‘Truncation error’ given by BCH expansion.

UPQP (τ) =
�
e(1/2)Ŝδτ eT̂ δτ e(1/2)Ŝδτ

�τ/δτ

UPQP (τ) =
�
eλŜδτ e(1/2)T̂ δτ e(1−2λ)Ŝδτ e(1/2)T̂ δτ eλŜδτ

�τ/δτ



Higher Order Integrators
• Creutz, Gocksch, Campostrini: 

– complicated series of forward/backward steps to cancel 
errors at 2nd order:

• Minimum Norm:
– 4 & 5 Force evaluation variants
– Tunable parameters: λ,ρ,θ,μ

U2k+2(δτ) = U2k(b1δτ) U2k(b2δτ) U2k(b1δτ)

b1 =
1

2− 21/(2k+1)

b2 = 1− 2b1

U(δτ) = eθδτŜ eρδτT̂ eλδτŜ eµδτT̂

e(1/2)(1−2(λ+θ))δτŜ

e(1−2(µ+ρ)δτT̂

e(1/2)(1−2(λ+θ))δτŜ

eµδτT̂ eλδτŜ eρδτT̂ eθδτŜ
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Multiple Time Steps
• Consider action: S = S0 + S1

• Then to integrate S, define recursively:

• Two time scales:  δτ1 and δτ1/N
• Generalize to multiple time-scales/levels
• Can nest more sophisticated integrators than just leapfrog

U0(δτ) = e(1/2)δτ0Ŝ0 eδτ0T̂ e(1/2)δτ0Ŝ0

U1(δτ1) = e(1/2)δτ1Ŝ1 U0

�
δτ1

N

�N

e(1/2)δτ1Ŝ1



Shadow Hamiltonian
• These integrators actually conserve exactly a Shadow Hamiltonian.
• Defined as an asymptotic (Baker-Campbell-Haussdorff) expansion

• Can measure ‘Poisson Bracket’ terms: {S,{S,T}}, {S, {S, {S,
{S,T}}}} etc.

• BCH expansion generalizes to multi-level & higher order 
integrators (but gets very complicated)

Amolecular dynamics trajectory is not only an approximate integral curve of the Hamiltonian vector field

Ĥ corresponding to H, but is also an exact integral curve of the Hamiltonian vector field ~̂H of an exactly

conserved shadowHamiltonian ~H. The asymptotic expansion of this shadowHamiltonian in the step size!"

may be computed using the Baker—-Campbell—-Hausdorff (BCH) formula and expressed in terms of

Poisson brackets (PBs) [2,3]. As a simple example consider the PQPQP (also known as 2MN [4]) integrator

UPQPQPð"Þ ¼ ðe#Ŝ!"eð1=2ÞT̂!"eð1$2#ÞŜ!"eð1=2ÞT̂!"e#Ŝ!"Þ"=!"

whose shadow Hamiltonian is

~H PQPQP ¼ H þ
!
6#2 $ 6#þ 1

12
fS; fS; Tggþ 1$ 6#

24
fT; fS; Tgg

"
!"2 þ

!$1þ 30#2 $ 60#3 þ 30#4

720

& fS; fS; fS; fS; Tggggþ$4þ 15#þ 15#2 $ 30#3

720
fT; fS; fS; fS; Tggggþ$7þ 30#

1440

& fT; fT; fS; fS; Tggggþ$7þ 30#

5760
fT; fT; fT; fS; Tggggþ$2þ 15#$ 35#2 þ 30#3

240

& ffS; Tg; fS; fS; Tgggþ$2þ 15#$ 30#2

720
ffS; Tg; fT; fS; Tggg

"
!"4 þOð!"6Þ:

(1)

Note that we have one free parameter, #, which is often set to some value not taking PBs into account. In [5],

the authors chose # by minimising minimizing !H empirically, requiring a sequence of runs at different

values of#. Others used #c ' 0:193 183 #c ' 0:193183 [4], whichminimizes the norm of the coefficients

of the PBs in the second-order term. However, this is not necessarily the best choice.

We have evaluated PBs and shadow Hamiltonians for gauge theories (where gauge fields are constrained

to live on a Lie group manifold) for the first time [3,6–8]. Therefore, in this letterpaper we propose to

measure the volume-averaged PBs and tune the free parameters of an MD integrator taking PB

measurements into account. As we will see, our tuning procedure also allows us to find out the best

number of steps of a nested integrator scheme. We also present a new integrator step and a new integrator

which will be able to reduce the cost of large volume simulations.
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Integrator Tuning
• Measure Poisson Bracket commutators
• Minimize Distance between H and its shadow, ie adjust step sizes, 

and λ-s so as to minimise

• On average, this should be the closely related to (same as?)

• PBs in LQCD are extensive, and should be fairly stable over a 
simulation (not like MD where they can fluctuate a lot)

σ
2(∆H), ∆H = H̃ −H

σ
2(δH), δH = H(U �

, π
�)−H(U, π)



Recent Results
• PB’s allow prediction of 

acceptance rate as a 
function of step-size 
and tuning parameters

• A more systematic way 
of tuning than 
‘balancing forces’

• PBs allowed to improve 
an already well tuned 
set of parameters...

II. INTEGRATORTUNING

Let us define the difference between the shadow ( ~H) and actual (H) Hamiltonians as !H ¼ ~H "H.

Noting thatVarð!HÞmeans the variance of the distribution of values of!H over phase space, one can show

that the acceptance rate Pacc can be given by [8]

Pacc ¼ erfc
! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

4
Varð!HÞ

s #
: (2)

To estimate Pacc from eEq. (2), one only needs to measure the PB from equilibrated configurations. This

allows us to express Pacc as a function of the integrator parameters and find their optimal values that

maximize Pacc.

As a simple test, we consider an HMC simulation of two flavors of Wilson fermions at ! ¼ 0:158 and

Wilson gauge action at " ¼ 5:6 on an 84 lattice. We use a single- level PQPQP integrator and a unit

trajectory length;, therefore, we have two tunable parameters: the integrator parameter # and the step size

$%. Wemeasure!H up to fourth order in $%. In Figure. 1, we compare the acceptance rates predicted by the

formula abovewith numerical data taken from simulations at various values of# and$%. The PB values used

for the predictions were measured at # ¼ 0:18 and $% ¼ 0:1—but one should note that our predictions are
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FIG. 1. Comparison of measured acceptance rates and their predictions from Poisson bracket measure-

ments. In the left- hand plot we fix $% ¼ 0:1 and leave # as a free parameter, whereas in the right we take

# ¼ 0:18 and plot Pacc as a function of $%.
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Force Gradient Integrator
• In MN Integrator choose λ=1/6, kill {T,{S,T}} term at O(δτ2)
• Leaves {S,{S,T}} term at O(δτ2) - so called Force Gradient term
• Define Force Gradient Integrator

• This is a bona fide 4th order integrator
– Campostrini:  (δτ4 / 34560) x (commutator terms)  
– Force Gradient: (δτ4 / 155520) x (commutator terms)

• FG term ~ 2 force calculations (force + force of force), 5 in total
• Not much back tracking  :-)

UPQP (δτ) = e(1/6)Ŝδτ e(1/2)T̂ δτ

e48Ŝδτ− �{S,{S,T}}δτ3/72

e(1/2)T̂ δτ e(1/6)Ŝδτ



Hantao’s Trick...

. . . . . .

Force gradient integrator

! Implementation: follow Horner scheme
a + bx + cx2 = a+ x(b + cx)

! The force gradient step is similar

pi ←− pi −
2

3
τei (S) +

1

36
τ3e j(S)ejei (S)

! rewrite as (F j = e j(S))

pi ←− pi −
2

3
τ

(
1− 1

24
τ2F jej

)
ei (S)

! approximate it by (using Taylor expansion)

−2

3
τ

(
1− 1

24
τ2F jej

)
ei (S) = −2

3
τ exp

(
−τ2

24
F jej

)
ei (S)+O(τ5)

! exp
(
− τ2

24F
jej

)
S [U] = S

[
e−

τ2

24 F
jTjU

]

reproduced from 
from Hantao Yin’s, 
Lattice 2011 
contribution



Scaling Behaviour of FG for DWF

. . . . . .

Scaling behavior of force gradient integrator

Tested with the following integration scheme on a 163 × 32× 16
lattice with 2+1 flavor DWF simulations, mπ = 420MeV.

det

(
ml

ms

)

︸ ︷︷ ︸
top level

det
(ms

1

)1/2
det

(ms

1

)1/2
det

(ms

1

)1/2

︸ ︷︷ ︸
2nd level

+gauge field

︸ ︷︷ ︸
3rd level
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Figure: Scaling behavior
Omelyan 2.44± 0.21
Force Gradient 4.16± 0.21

! With force gradient, the top
level step size can be increased
to 1/3 compared with 1/4 in
Omelyan.

! With the first and last updaing
step combined, force gradient
PQPQP requires 3 CG inversion
while Omelyan requires 2 each
step.

reproduced from from Hantao Yin’s, Lattice 2011 contribution



Costs: MD times

. . . . . .

Applications on different lattices

We are using this new integration scheme on our production job.
The following shows a 163 × 8× 48 lattice with 160MeV pion

integrator λ step size acc ratio MD time(s)

Original 0.22 1/5 76/112=0.70 2.92e3
FG QPQPQ N/A 1/7 75/88=0.85 1.95e3

Ome QPQPQ(top) 0.22 1/7 81/104=0.78 1.65e3
Ome QPQPQ(all) 0.22 1/7 88/122=0.72 1.60e3

! Except the original scheme, which has CG stopping condition
1e-8, all the rest have CG stopping condition 1e-6 for the
quotient actions.

reproduced from from Hantao Yin’s, Lattice 2011 contribution



FG Current Status

• In current tests, extra inversions cost in FG term could not be 
ameliorated by large enough step size 
– Well tuned 2nd order integrators were more efficient
– but lattice sizes were quite small
– Scaling:

• O( V5/4 )  - for 2nd order scheme
• O( V9/8 )  - for 4th order scheme
• For sufficiently large lattice FG should win
• In current study in the PRD paper, this volume is 564 sites

– May already work for our large 403x256 lattices (?)



Shadow Hybrid Monte Carlo (SHMC)
• Proposed in Material Science 
• In HMC: accept/reject with 

approximation to Hs

– Now need to accept/reject 
momenta

– Do MD using H 
• preserves Hs exactly

• Reweight with exp(-(H-Hs))
• Motivation in Material Science:

– Real Hamiltonian
– Lumpy phase space
– Hs much more stable than H, easier 

to tune
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It suffices to show that πAB = πBA for arbitrary A ∩ B = φ. Now,

πAB =
∫ ∫

χA(γ)χB(RΨ(γ)) min

{

1,
ρ̃(Ψ(γ))

ρ̃(γ)

}

ρ̃(γ)dγ,

where χA and χB are indicator, or characteristic, functions of sets A and B,

and then

πAB =
∫ ∫

χA(γ)χB(RΨ(γ)) min {ρ̃(γ), ρ̃(Ψ(γ))}dγ.

Replacing γ by Ψ−1(γ) = RΨ(Rγ) :

πAB =
∫ ∫

χA(RΨ(Rγ))χB(Rγ) min {ρ̃(RΨ(Rγ)), ρ̃(γ)}dγ.

Finally, replacing γ by Rγ :

πAB =
∫ ∫

χA(RΨ(γ))χB(γ) min {ρ̃(γ), ρ̃(Ψ(γ))}dγ = πBA.

12

JA Izaguirre, S. Hampton
Journal of Computational Physics, vol 200 (2004), 
p 581-604 



QCD and SHMC
• Can construct truncated Hs 

using PBs
– In material science forward/

backward timestepping was 
used

• In QCD δH (and ΔH) is quite 
stable (unlike material science) 
since PBs are extensive

• In terms of PBs
– tuning MD in HMC <=> 

tuning reweighting in SHMC
• Would there be any gain?

Tuning HMC using Poisson brackets
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Figure 1: Shadow Hamiltonian and Poisson brackets.

!" = 0.1 for Wilson gauge and fermion actions. This demonstrates that the shadow Hamiltonian is
indeed conserved.

The second graph on figure 1 shows how several different Poisson brackets and their fluctua-
tions depend on the lattice size. As expected the Poisson brackets are more-or-less extensive (they
grow as L4); the statistical fluctutations in the Poisson brackets are also shown, and they fall as L−2

relative to the mean values as expected.

3.2 How to tune an integrator?

Figure 2: Histogram of #H at the start (blue)
and end (red) of the trajectories.

We are concerned in minimizing the cost of
HMC; in our case, this corresponds to maximiz-
ing the step size !" while maintaining a reason-
able acceptance rate. The first step to this goal
is to find the integrator parameters that maximize
the acceptance rate for a given value of !" . Here
we are going to discuss results for the STSTS inte-
grator described above, trying to find the optimal
value for $ .

Omelyan et al. [8] proposed that one should
minimize 〈#H2〉 ≡

〈

(H̃ −H)2〉, as this makes H̃
as close toH as possible. However, the amount by
which #H varies over the equilibrium distribution
% e−H turns out to be considerably smaller than
the values of #H itself. Therefore, it seems more reasonable to minimize Var(#H), the variance of
#H over this equilibrium distribution.

Indeed, figure 2 verifies that 〈#H〉 %
√

Var(#H). If we assume that Hf and Hi are selected
independently from their equilibrium distributions, which is a goal of HMC, 〈#H〉 % 〈!H〉 as
figure 2 also verifies. We can also conclude that the initial and final distributions seem to be
equivalent — of course, Hf is not distributed according to the equilibrium distribution as Hi is, but
its distribution does not differ significantly.
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∫ ∫
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and then
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Adaptive Step Size 
• Adaptive step size integrators are 

not symplectic usually. Need to be 
very careful not to loose area 
preservation.

• One particular technique tried by 
deForcrand and Takaishi.

• Algorithm by Stoffer, time 
symmetric step-size controller

• Problem: the step-size controller 
Es was not strongly correlated 
with ΔH which controls 
acceptance

• Overheads for variable step size 
method outweighed benefits 
compared to a fixed step-size at 
the same acceptance rate

Phys. Rev. E 55, 3658–3663 (1997)
Philippe de Forcrand and Tetsuya Takaishi 
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Perspectives
• Domain Science perspectives

– Currently explored in Wilson and DWF systems
– For production use, will need PBs for Wilson-Clover quarks
– Test FG in large volume runs
– Use PBs for Shadow HMC?

• Applied Math perspectives (conversation with Emil) 
– Stability & Stiffness Analysis, algorithm optimization
– Variable time stepping with time symmetric controls

• improve on the works of deForcrand and Takaishi
• time step changing can provide insight on when to use higher 

order methods
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– Hantao Yin (FG for DWF in CPS?)
– Kostas Orginos (Shadow Hamiltonian algorithms)
– James Osborn, Rich Brower

• FastMATH
– Emil Constantinescu (ANL) - stability and stiffness analysis, 

improvements on variable step size techniques, tuning


