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Nucleon Structure with Isotropic Wilson Lattices

Goal : Study Flavor-Dependent Nucleon Structure at High Momentum 
with Stat.signal Improvement and Inclusion of Disconnected Quarks

DISCO: disconnected diagrams with Hierarchical Probing and Deflation [A.Gambhir, K.Orginos] 
with all lattice coordinate/momenta 
CONN3PT : Nucleon form factors with high momentum transfer with boosted nucleon operators 
TMD : Transverse-momentum dependent PDFs with boosted high-momentum initial/final states

Efficient quark-disconnected  
contributions (DISCO)

nucleon states for high-Q2  
form factors(CONN3PT)  

high-momentum limit for lattice 
Transverse Momentum-Dependent  

parton dist. (TMD)
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TMD Program
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TMD Program
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High-Q2 Nucleon Form Factors in Experiments

GA(Q2) are measured in 𝜈-scattering, 𝝅-production; 
implications for neutrino flux norm. in IceCube, DUNE 

Axial radius (rA2)=12 / mA2: model dependence 

varying nuclear / GA shape models: mA=0.9 ... 1.4 GeV 
Strange quark GsA,P(Q2) : MiniBooNE

R4 Topical review
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Figure 1. Axial mass MA extractions. Left panel: from (quasi)elastic neutrino and antineutrino
scattering experiments. The weighted average is MA = 1.026 ± 0.021 GeV. Right panel: from
charged pion electroproduction experiments. The weighted average is MA = 1.069 ± 0.016 GeV.
Note that value for the MAMI experiment contains both the statistical and systematical uncertainty;
for other values the systematical errors were not explicitly given. The labels SP, DR, FPV and
BNR refer to different methods evaluating the corrections beyond the soft pion limit as explained
in the text.
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Figure 2. Experimental data for the normalized axial form factor extracted from pion
electroproduction experiments in the threshold region. Note that all results are shown for the
experiments where various theoretical models were used in the analysis to extract GA. For
orientation, the dashed curve shows a dipole fit with an axial mass MA = 1.1 GeV.

mass were determined from the slopes of the angle-integrated differential electroproduction
cross sections at threshold. The results of various measurements and theoretical approaches
are shown in the right panel of figure 1. We recall that [27, 38] were omitted from the fit
for lack of reasonable compatibility with the other results. In figure 2 we have collected the

[V.Bernard et at, J.Phys.G28:R1(2002)]

 Form Factors at high momentum:  
JLab@12GeV :  
up to 18 GeV2; 
Q2➝∞ scaling;  
flavor separation  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FIG. 2: The ratios ��1
d F d
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d
1 , �

�1
u F u

2 /F
u
1 and ��1

p F p
2 /F

p
1 vs.

momentum transfer Q2. The data and curves are described
in the text.

The form factors Fu
1 , F d

1 , Fu
2 and Fu

2 are shown in
Fig. 3, all multiplied by Q4 for better clarity in the high-
Q2 range. The values are given in Table I.

TABLE I: The flavor contributions to the proton form factors,
obtained usingG n

E
/G n

M
form factor data from Refs.[13-18] and

the Kelly fit [20] for the other form factors. The Q2 values
are given in GeV2.

Q2 Ref. F u
1 F d

1 F u
2 F d

2

0.30 [17] 1.075(6) 0.505(12) 0.716(6) �0.995(12)

0.45 [18] 0.853(6) 0.377(12) 0.515(6) �0.777(12)

0.50 [14] 0.789(6) 0.332(12) 0.473(6) �0.708(12)

0.50 [16] 0.789(4) 0.340(7) 0.463(4) �0.713(7)

0.59 [17] 0.695(6) 0.283(13) 0.394(6) �0.617(13)

0.67 [15] 0.628(6) 0.249(12) 0.342(6) �0.552(12)

0.79 [17] 0.544(8) 0.206(15) 0.283(8) �0.467(15)

1.00 [16] 0.434(5) 0.154(10) 0.211(5) �0.357(10)

1.13 [18] 0.379(3) 0.124(5) 0.183(3) �0.298(5)

1.45 [18] 0.290(3) 0.093(6) 0.128(3) �0.213(6)

1.72 [13] 0.2257(22) 0.0529(43) 0.1103(22) �0.1429(43)

2.48 [13] 0.1380(18) 0.0278(35) 0.0632(18) �0.0707(35)

3.41 [13] 0.0851(12) 0.0131(24) 0.0370(12) �0.0337(24)

Up to Q2 ⇥ 1 GeV2 there is a constant scaling fac-
tor of �2.5 for F1 and �0.75 for F2, between the u- and
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FIG. 3: The Q2-dependence for the u- and d-contributions to
the proton form factors (multiplied by Q4). The data points
are explained in the text.

d-quark contributions. Above 1 GeV2 the d-quark con-
tributions to both nucleon form factors multiplied by Q4

become constant in contrast to the u-quark contributions
which continue to rise. These experimental results are in
qualitative agreement with the predictions for the mo-
ments of the generalized parton distributions reported in
Ref. [22]. It is interesting to note that the d-contributions
correspond to the flavor that is represented singly in the
proton, whereas the u-contributions correspond to the
flavor for which there are two quarks. In the framework
of Dyson-Schwinger equation calculations, the reduction
of the ratios F d

1 /F
u
1 and F d

2 /F
u
2 at high Q2 is related to

diquark degrees of freedom [23]. The reduction of these
ratios has the immediate consequence that Sp has its ob-
served shape despite the fact that Su and Sd are almost
linear with Q2.

Another representation of the Dirac form factor is the
infinite momentum frame density, ⇥D , given by the ex-
pression ⇥D (b) =

�
(QdQ/2�)J0(Qb)F1(Q2) [24], where

J0 is the zeroth order Bessel function and b is the im-
pact parameter. The faster drop o� of the d-quark form
factors in Fig. 3 implies that the u quarks have a signif-
icantly tighter distribution than the d quarks in impact-
parameter space, as was noticed in Ref. [25].

In summary, we have performed a flavor separation
of the elastic electromagnetic form factors of the nu-
cleon. We find that for large Q2 the d-quark contri-
butions to both proton form factors are reduced rela-
tive to the u-quark contributions. We find also that the
Q2-dependencies of the flavor-decomposed quantities Su

and Sd are relatively linear in contrast to the more com-
plicated behavior of Sp and Sn. This linearity is due
to the fact, as yet unexplained, that the ratios Fu

2 /F
u
1

Q
4
F

q 1
(Q

2
)

�
q
Q

4
F

q 2
(Q

2
)

u & d contributions  
to F1,2 form factors 
[G.D.Cates et al.,  
PRL106:252003]
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FIG. 1: The ratio of the Pauli and Dirac form factors, multi-
plied by Q2, S =Q2F1/F2, vs. the negative four-momentum
transfer squared Q2. The upper panel shows Sp for the proton
and Sn for the neutron using data from Refs.[13-18], as well as
the curves of the prediction [11]: ln2[Q2/�2] for �=300 MeV
which is normalized to the data at 2.5 GeV2. The bottom
panel shows the individual flavor quantities Su and Sd for the
u and d quarks, respectively.

on Gn
E
/Gn

M
for the neutron up to Q2=3.4 GeV2 were re-

cently published by Riordan et al. [13]. For the first time,
it is possible to examine the behavior of the neutron ratio
F n
2 /F

n
1 in the same Q2 range as that where the interest-

ing behavior was first seen for the proton [10]. Using the
data of Riordan et al. as well as those of Refs.[14-18], we
also show in Fig. 1 the quantity Sn ⇥Q2F n

2 /F
n
1 . Scaling

of Sn is clearly not evident at the lower Q2 values shown,
although the data do not rule out this type of behavior
at a moderately higher Q2.

Thus far, by discussing F p(n)
1 and F p(n)

2 we are ex-
plicitly examining the behavior of the matrix element of
the electromagnetic operators ( 23u�µu+ �1

3 d�µd) in the
proton (neutron). If we assume charge symmetry (thus
implying ⌅p|u�µu|p⇧ = ⌅n|d�µd|n⇧), it is possible to per-

form a flavor decomposition of the form factors F p(n)
1

and F p(n)
2 , and construct form factors corresponding to

the matrix elements of u�µu and d�µd individually [19].
Here we use the relations

Fu
1(2) = 2F p

1(2) + Fn
1(2) and F d

1(2) = 2Fn
1(2) + F p

1(2).

In what follows, we use the convention that Fu
1(2) and

F d
1(2) refer to the up and down quark contributions to

the Dirac (Pauli) form factors of the proton. At Q2=0,

the normalizations of the Dirac form factors are given by:
Fu
1 (0) = 2 (F d

1 (0) = 1) so as to yield the normalization
of 2 (1) for the u (d)-quark distributions in the proton.
The normalizations of the Pauli form factors at Q2=0 are
given by F q

2 (0) = ⇥q, where ⇥u and ⇥d can be expressed
in terms of the proton (⇥p) and neutron (⇥n) anomalous
magnetic moments as

⇥u ⇥ 2⇥p + ⇥n = +1.67 and ⇥d ⇥ ⇥p + 2⇥n = �2.03.

Having defined the flavor-separated Dirac and Pauli
form factors, we can also define the quantities

Su ⇥ Q2F u
2 /F

u
1 and Sd ⇥ Q2F d

2 /F
d
1 ,

which we have plotted in the bottom panel of Fig. 1. Each
individual data point corresponds to an experimental re-
sult onGn

E/G
n
M from Refs.[13-18]. Only the uncertainties

in the ratio Gn
E
/Gn

M
are included in the error bars of the

flavor-separated results because the other form factors
(calculated with the Kelly fit [20]) are known to much
higher accuracy, albeit dependent on the particular pa-
rameterization chosen. The behavior we see is completely
di�erent from that of the proton and the neutron. There
is a striking lack of saturation, and indeed the variation
of Su and Sd with Q2 appears to be quite linear. It is in-
teresting also that the slope associated with the d quark
is about six times larger than that of the u quark. When
we consider the matrix elements of u�µu and d�µd indi-
vidually, the relationship between the Pauli and the Dirac
amplitudes is quite di�erent from when we consider the
sum of the amplitudes that results in the full hadronic
matrix element (Eq. 2).
While it is instructive to plot Su and Sd so that we can

compare them directly with the widely discussed Sp for
the proton, the inclusion of the factor of Q2 masks the
detailed behavior as Q2 approaches zero. We thus plot
in the top two panels of Fig. 2 the quantities ⇥�1

u F u
2 /F

u
1

and ⇥�1
d F d

2 /F
d
1 . Here, a second aspect of the behav-

ior of the flavor decomposed form factors appears that is
quite intriguing. These ratios are relatively constant for
Q2 greater than ⇤ 1GeV2, but have a more complex be-
havior for lower values of Q2. This might be interpreted
as a transition between a region where the virtual pho-
ton coupling to the three-quark component in the wave
function dominates (higher Q2) and a region where the
inclusion of a coupling to a five-quark component is es-
sential (lower Q2). We note also that the ratio F2/F1

for the proton does not show a di�erent behavior above
and below 1GeV2 as one can see in the bottom panel of
Fig. 2. The calculation of the form factors in a relativis-
tic constituent quark model (RCQM) [21] (shown by the
blue curves in Fig. 2) deviates considerably from the data
which illustrates the discriminating power of the flavor
separated form factors. The empirical Kelly fit (which
predates Ref. [13]), corresponds to the black curves, and
is in reasonable agreement with the data, particularly at
lower Q2.
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High-Momentum Nucleon States and Form Factors

Optimize smearing for boosted nucleon states  
[orig. B.Musch]
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Nucleon operator on a lattice with Gaussian-"smeared"  
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This Proposal (CONN3PT): continued study  
of nucleon structure with boosted sources  
mπ =320,190 MeV with a=0.114, a=0.081 fm 
In Breit frame: 
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RQCD results for spectrum  
[G. Bali et al, arXiv:1602.05525]

13

not surprising since the support of the smearing function
in the direction of the momentum is quite small. At the
same time this small support may explain why the boost
outperforms conventional Wuppertal smearing as broad
wavefunctions are disfavoured at high momenta, unless
the k vector is introduced, see Eq. (29).

In summary, substantially contracting the smearing
function in the direction of the momentum ameliorates
the phase mismatch discussed in this article. Therefore,
some improvement over the conventional isotropic smear-
ing case can be achieved. However, only momentum
smearing correctly accounts for this e�ect and we see no
indication that injecting a momentum alters the optimal
shape of the modulus of the smearing function Eq. (45).

D. Comparison with dispersion relations

Our main aim here was to demonstrate the e�ective-
ness of momentum smearing. For this purpose it was
su⇤cient to consider only one source position on 200 in-
dividual gauge configurations. The present state-of-the-
art, however, is to realize multiple sources on ten times as
many configurations. In the near future we will compute
a multitude of physically interesting observables with en-
hanced statistics. The masses shown in Eq. (38) were
already obtained with high statistics and in Figs. 3–9
we have compared e�ective energies against the contin-
uum and lattice dispersion relations Eqs. (39)–(41), using
these values.

FIG. 10. Pion energies for di�erent lattice momenta. in com-
parison to the continuum (solid curve) and lattice (points con-
nected by dotted lines) dispersion relations Eqs. (39) and (40).

In all cases the smeared-smeared e�ective energies from
optimized momentum smearing were in agreement with
plateaus from t � tmin = 8.5a ⇥ 0.61 fm onwards, where
t = 8.5a corresponds to the e�ective energy obtained
from the correlation function at 8a and 9a, see Eq. (48).
In many cases tmin could be chosen smaller. For the mo-
ment being, we conservatively approximate the energies
by EH(p) ⇥ EH,e�(p, tmin). The results as a function
of p are shown in Figs. 10 and 11 and compared to the
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FIG. 11. Nucleon energies for di�erent lattice momenta. in
comparison to the continuum (solid curve) and lattice (points
connected by dotted lines) dispersion relations Eqs. (39) and
(41).

dispersion relation expectations. We also display results
obtained with conventional smearing for small momenta
where this is possible. For the two-point functions stud-
ied here the precision of the conventional results can be
improved at little computational overhead by averaging
over (for the absolute momentum values shown) six, eight
or twelve equivalent directions. We have not done this,
to allow for a “fair” comparison of the e⇤ciency of the
smearing methods. It is clear from the figures, however,
that the maximally possible error reduction, assuming
di�erent momentum direction results to be statistically
uncorrelated, would not a�ect any of our conclusions.
We do not expect either parametrization shown in

Figs. 10 and 11 to perfectly describe the data as the
lattice dispersion relations are for point particles, assum-
ing a particular form of the e�ective Lagrangian. How-
ever, di�erences between the two functions are indicative
for the size of possible lattice e�ects. While in the pion
case di�erences between the parametrizations are on the
present level of statistics insignificant, the nucleon data
appear to be better described by the continuum disper-
sion relation. In the near future we will further investi-
gate this, increasing our statistics and also employing a
di�erent smearing as described in Sec. III E.

VI. CONCLUSION

In many lattice gauge theory applications hadrons car-
rying high momenta are required. Due to the exponen-
tial increase of relative errors of n-point functions with
Euclidean time distances and diminishing ground state
sampling, high momenta previously were very di⇤cult
or impossible to achieve. In Sec. II we have introduced a
new class of quark smearing methods for the construction
of hadronic interpolators that address and substantially
mitigate these problems. One particular realization of
these methods, that is trivial to implement and comes
with very little computational overhead, is momentum

+ Include disconnected diagrams (DISCO)  
Motivation : JLab @12 GeV will measure proton, 
neutron form factors up to Q2 = 12..18 GeV2

k
x

ky
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Signal Gain : Traditional vs. Boosted Smearing
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Nucleon Effective Energy: mπ = 320 MeV, a=0.081 fm, 323x64
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each quark is boosted with the same k=[0 0 1]  
w=5.55 (N=45) chosen for preliminary structure study [SNS, Lattice 2016]



Nucleon Structure with Wilson Clover Fermions USQCD Meeting, JLab, Apr 28-30, 2017

  

M.Engelhardt(PI), LHPc

0 2 4 6 8 10
Q2 [GeV2]

0

1

2

3

4

5

6

Q
4
F

U 1

T = 8a

T = 9a

T = 10a

summ
2-exp fit

Q2 Dependence of  F1
u and F1

d 

0 2 4 6 8 10
Q2 [GeV2]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Q
4
F

D 1

T = 8a

T = 9a

T = 10a

summ
2-exp fit

expect F1(Q2)~ Q4 scaling [Lepage, Brodsky (1979)] 
Both form factors overshoot experiment (x3-4)
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FIG. 2: The ratios ��1
d F d

2 /F
d
1 , �

�1
u F u

2 /F
u
1 and ��1

p F p
2 /F

p
1 vs.

momentum transfer Q2. The data and curves are described
in the text.

The form factors Fu
1 , F d

1 , Fu
2 and Fu

2 are shown in
Fig. 3, all multiplied by Q4 for better clarity in the high-
Q2 range. The values are given in Table I.

TABLE I: The flavor contributions to the proton form factors,
obtained usingG n

E
/G n

M
form factor data from Refs.[13-18] and

the Kelly fit [20] for the other form factors. The Q2 values
are given in GeV2.

Q2 Ref. F u
1 F d

1 F u
2 F d

2

0.30 [17] 1.075(6) 0.505(12) 0.716(6) �0.995(12)

0.45 [18] 0.853(6) 0.377(12) 0.515(6) �0.777(12)

0.50 [14] 0.789(6) 0.332(12) 0.473(6) �0.708(12)

0.50 [16] 0.789(4) 0.340(7) 0.463(4) �0.713(7)

0.59 [17] 0.695(6) 0.283(13) 0.394(6) �0.617(13)

0.67 [15] 0.628(6) 0.249(12) 0.342(6) �0.552(12)

0.79 [17] 0.544(8) 0.206(15) 0.283(8) �0.467(15)

1.00 [16] 0.434(5) 0.154(10) 0.211(5) �0.357(10)

1.13 [18] 0.379(3) 0.124(5) 0.183(3) �0.298(5)

1.45 [18] 0.290(3) 0.093(6) 0.128(3) �0.213(6)

1.72 [13] 0.2257(22) 0.0529(43) 0.1103(22) �0.1429(43)

2.48 [13] 0.1380(18) 0.0278(35) 0.0632(18) �0.0707(35)

3.41 [13] 0.0851(12) 0.0131(24) 0.0370(12) �0.0337(24)

Up to Q2 ⇥ 1 GeV2 there is a constant scaling fac-
tor of �2.5 for F1 and �0.75 for F2, between the u- and
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FIG. 3: The Q2-dependence for the u- and d-contributions to
the proton form factors (multiplied by Q4). The data points
are explained in the text.

d-quark contributions. Above 1 GeV2 the d-quark con-
tributions to both nucleon form factors multiplied by Q4

become constant in contrast to the u-quark contributions
which continue to rise. These experimental results are in
qualitative agreement with the predictions for the mo-
ments of the generalized parton distributions reported in
Ref. [22]. It is interesting to note that the d-contributions
correspond to the flavor that is represented singly in the
proton, whereas the u-contributions correspond to the
flavor for which there are two quarks. In the framework
of Dyson-Schwinger equation calculations, the reduction
of the ratios F d

1 /F
u
1 and F d

2 /F
u
2 at high Q2 is related to

diquark degrees of freedom [23]. The reduction of these
ratios has the immediate consequence that Sp has its ob-
served shape despite the fact that Su and Sd are almost
linear with Q2.

Another representation of the Dirac form factor is the
infinite momentum frame density, ⇥D , given by the ex-
pression ⇥D (b) =

�
(QdQ/2�)J0(Qb)F1(Q2) [24], where

J0 is the zeroth order Bessel function and b is the im-
pact parameter. The faster drop o� of the d-quark form
factors in Fig. 3 implies that the u quarks have a signif-
icantly tighter distribution than the d quarks in impact-
parameter space, as was noticed in Ref. [25].

In summary, we have performed a flavor separation
of the elastic electromagnetic form factors of the nu-
cleon. We find that for large Q2 the d-quark contri-
butions to both proton form factors are reduced rela-
tive to the u-quark contributions. We find also that the
Q2-dependencies of the flavor-decomposed quantities Su

and Sd are relatively linear in contrast to the more com-
plicated behavior of Sp and Sn. This linearity is due
to the fact, as yet unexplained, that the ratios Fu

2 /F
u
1

[G.D.Cates, C.W.de Jager,  
S.Riordan, B.Wojtsekhovski,  

PRL106:252003, arXiv:1103.1808]

expect F1(Q2)~ Q4 scaling [Lepage, Brodsky (1979)] 
Both form factors overshoot experiment (x3-4)
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Qualitative behavior of F1u, F1d agrees with phenomenology
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FIG. 1: The ratio of the Pauli and Dirac form factors, multi-
plied by Q2, S =Q2F1/F2, vs. the negative four-momentum
transfer squared Q2. The upper panel shows Sp for the proton
and Sn for the neutron using data from Refs.[13-18], as well as
the curves of the prediction [11]: ln2[Q2/�2] for �=300 MeV
which is normalized to the data at 2.5 GeV2. The bottom
panel shows the individual flavor quantities Su and Sd for the
u and d quarks, respectively.

on Gn
E
/Gn

M
for the neutron up to Q2=3.4 GeV2 were re-

cently published by Riordan et al. [13]. For the first time,
it is possible to examine the behavior of the neutron ratio
F n
2 /F

n
1 in the same Q2 range as that where the interest-

ing behavior was first seen for the proton [10]. Using the
data of Riordan et al. as well as those of Refs.[14-18], we
also show in Fig. 1 the quantity Sn ⇥Q2F n

2 /F
n
1 . Scaling

of Sn is clearly not evident at the lower Q2 values shown,
although the data do not rule out this type of behavior
at a moderately higher Q2.

Thus far, by discussing F p(n)
1 and F p(n)

2 we are ex-
plicitly examining the behavior of the matrix element of
the electromagnetic operators ( 23u�µu+ �1

3 d�µd) in the
proton (neutron). If we assume charge symmetry (thus
implying ⌅p|u�µu|p⇧ = ⌅n|d�µd|n⇧), it is possible to per-

form a flavor decomposition of the form factors F p(n)
1

and F p(n)
2 , and construct form factors corresponding to

the matrix elements of u�µu and d�µd individually [19].
Here we use the relations

Fu
1(2) = 2F p

1(2) + Fn
1(2) and F d

1(2) = 2Fn
1(2) + F p

1(2).

In what follows, we use the convention that Fu
1(2) and

F d
1(2) refer to the up and down quark contributions to

the Dirac (Pauli) form factors of the proton. At Q2=0,

the normalizations of the Dirac form factors are given by:
Fu
1 (0) = 2 (F d

1 (0) = 1) so as to yield the normalization
of 2 (1) for the u (d)-quark distributions in the proton.
The normalizations of the Pauli form factors at Q2=0 are
given by F q

2 (0) = ⇥q, where ⇥u and ⇥d can be expressed
in terms of the proton (⇥p) and neutron (⇥n) anomalous
magnetic moments as

⇥u ⇥ 2⇥p + ⇥n = +1.67 and ⇥d ⇥ ⇥p + 2⇥n = �2.03.

Having defined the flavor-separated Dirac and Pauli
form factors, we can also define the quantities

Su ⇥ Q2F u
2 /F

u
1 and Sd ⇥ Q2F d

2 /F
d
1 ,

which we have plotted in the bottom panel of Fig. 1. Each
individual data point corresponds to an experimental re-
sult onGn

E/G
n
M from Refs.[13-18]. Only the uncertainties

in the ratio Gn
E
/Gn

M
are included in the error bars of the

flavor-separated results because the other form factors
(calculated with the Kelly fit [20]) are known to much
higher accuracy, albeit dependent on the particular pa-
rameterization chosen. The behavior we see is completely
di�erent from that of the proton and the neutron. There
is a striking lack of saturation, and indeed the variation
of Su and Sd with Q2 appears to be quite linear. It is in-
teresting also that the slope associated with the d quark
is about six times larger than that of the u quark. When
we consider the matrix elements of u�µu and d�µd indi-
vidually, the relationship between the Pauli and the Dirac
amplitudes is quite di�erent from when we consider the
sum of the amplitudes that results in the full hadronic
matrix element (Eq. 2).
While it is instructive to plot Su and Sd so that we can

compare them directly with the widely discussed Sp for
the proton, the inclusion of the factor of Q2 masks the
detailed behavior as Q2 approaches zero. We thus plot
in the top two panels of Fig. 2 the quantities ⇥�1

u F u
2 /F

u
1

and ⇥�1
d F d

2 /F
d
1 . Here, a second aspect of the behav-

ior of the flavor decomposed form factors appears that is
quite intriguing. These ratios are relatively constant for
Q2 greater than ⇤ 1GeV2, but have a more complex be-
havior for lower values of Q2. This might be interpreted
as a transition between a region where the virtual pho-
ton coupling to the three-quark component in the wave
function dominates (higher Q2) and a region where the
inclusion of a coupling to a five-quark component is es-
sential (lower Q2). We note also that the ratio F2/F1

for the proton does not show a di�erent behavior above
and below 1GeV2 as one can see in the bottom panel of
Fig. 2. The calculation of the form factors in a relativis-
tic constituent quark model (RCQM) [21] (shown by the
blue curves in Fig. 2) deviates considerably from the data
which illustrates the discriminating power of the flavor
separated form factors. The empirical Kelly fit (which
predates Ref. [13]), corresponds to the black curves, and
is in reasonable agreement with the data, particularly at
lower Q2.

2
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FIG. 1: The ratio of the Pauli and Dirac form factors, multi-
plied by Q2, S =Q2F1/F2, vs. the negative four-momentum
transfer squared Q2. The upper panel shows Sp for the proton
and Sn for the neutron using data from Refs.[13-18], as well as
the curves of the prediction [11]: ln2[Q2/�2] for �=300 MeV
which is normalized to the data at 2.5 GeV2. The bottom
panel shows the individual flavor quantities Su and Sd for the
u and d quarks, respectively.

on Gn
E
/Gn

M
for the neutron up to Q2=3.4 GeV2 were re-

cently published by Riordan et al. [13]. For the first time,
it is possible to examine the behavior of the neutron ratio
F n
2 /F

n
1 in the same Q2 range as that where the interest-

ing behavior was first seen for the proton [10]. Using the
data of Riordan et al. as well as those of Refs.[14-18], we
also show in Fig. 1 the quantity Sn ⇥Q2F n

2 /F
n
1 . Scaling

of Sn is clearly not evident at the lower Q2 values shown,
although the data do not rule out this type of behavior
at a moderately higher Q2.

Thus far, by discussing F p(n)
1 and F p(n)

2 we are ex-
plicitly examining the behavior of the matrix element of
the electromagnetic operators ( 23u�µu+ �1

3 d�µd) in the
proton (neutron). If we assume charge symmetry (thus
implying ⌅p|u�µu|p⇧ = ⌅n|d�µd|n⇧), it is possible to per-

form a flavor decomposition of the form factors F p(n)
1

and F p(n)
2 , and construct form factors corresponding to

the matrix elements of u�µu and d�µd individually [19].
Here we use the relations

Fu
1(2) = 2F p

1(2) + Fn
1(2) and F d

1(2) = 2Fn
1(2) + F p

1(2).

In what follows, we use the convention that Fu
1(2) and

F d
1(2) refer to the up and down quark contributions to

the Dirac (Pauli) form factors of the proton. At Q2=0,

the normalizations of the Dirac form factors are given by:
Fu
1 (0) = 2 (F d

1 (0) = 1) so as to yield the normalization
of 2 (1) for the u (d)-quark distributions in the proton.
The normalizations of the Pauli form factors at Q2=0 are
given by F q

2 (0) = ⇥q, where ⇥u and ⇥d can be expressed
in terms of the proton (⇥p) and neutron (⇥n) anomalous
magnetic moments as

⇥u ⇥ 2⇥p + ⇥n = +1.67 and ⇥d ⇥ ⇥p + 2⇥n = �2.03.

Having defined the flavor-separated Dirac and Pauli
form factors, we can also define the quantities

Su ⇥ Q2F u
2 /F

u
1 and Sd ⇥ Q2F d

2 /F
d
1 ,

which we have plotted in the bottom panel of Fig. 1. Each
individual data point corresponds to an experimental re-
sult onGn

E/G
n
M from Refs.[13-18]. Only the uncertainties

in the ratio Gn
E
/Gn

M
are included in the error bars of the

flavor-separated results because the other form factors
(calculated with the Kelly fit [20]) are known to much
higher accuracy, albeit dependent on the particular pa-
rameterization chosen. The behavior we see is completely
di�erent from that of the proton and the neutron. There
is a striking lack of saturation, and indeed the variation
of Su and Sd with Q2 appears to be quite linear. It is in-
teresting also that the slope associated with the d quark
is about six times larger than that of the u quark. When
we consider the matrix elements of u�µu and d�µd indi-
vidually, the relationship between the Pauli and the Dirac
amplitudes is quite di�erent from when we consider the
sum of the amplitudes that results in the full hadronic
matrix element (Eq. 2).
While it is instructive to plot Su and Sd so that we can

compare them directly with the widely discussed Sp for
the proton, the inclusion of the factor of Q2 masks the
detailed behavior as Q2 approaches zero. We thus plot
in the top two panels of Fig. 2 the quantities ⇥�1

u F u
2 /F

u
1

and ⇥�1
d F d

2 /F
d
1 . Here, a second aspect of the behav-

ior of the flavor decomposed form factors appears that is
quite intriguing. These ratios are relatively constant for
Q2 greater than ⇤ 1GeV2, but have a more complex be-
havior for lower values of Q2. This might be interpreted
as a transition between a region where the virtual pho-
ton coupling to the three-quark component in the wave
function dominates (higher Q2) and a region where the
inclusion of a coupling to a five-quark component is es-
sential (lower Q2). We note also that the ratio F2/F1

for the proton does not show a di�erent behavior above
and below 1GeV2 as one can see in the bottom panel of
Fig. 2. The calculation of the form factors in a relativis-
tic constituent quark model (RCQM) [21] (shown by the
blue curves in Fig. 2) deviates considerably from the data
which illustrates the discriminating power of the flavor
separated form factors. The empirical Kelly fit (which
predates Ref. [13]), corresponds to the black curves, and
is in reasonable agreement with the data, particularly at
lower Q2.

[G.D.Cates, C.W.de Jager,  
S.Riordan, B.Wojtsekhovski,  

PRL106:252003, arXiv:1103.1808]

expect Q2 F1(Q2)/F2(Q2) ~ log[Q2 /Λ2] scaling  
[Belitsky, Ji, Yuan (2003)] 
Qualitative behavior of F1u, F1d agrees with phenomenology
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2.2 Proton Form-Factor Ratio Measurements up to Q2= 12 GeV2 using Recoil Polarization

Introduction The experiment GEp (E12-07-109) was approved by PAC32 in August of 2007 and was
the experiment that provided the original motivation for the Super Bigbite Spectrometer. It will measure
the Sachs Form Factors ratio Gp

E/Gp
M of the proton using the polarization-transfer method in the reaction

p(�e, e��p). The polarization of the recoil proton will be measured using a large-acceptance spectrometer,
based on the Super Bigbite magnet, that will incorporate a double polarimeter instrumented with GEM
trackers and a highly-segmented hadron calorimeter.

The electron will be detected in coincidence by a electromagnetic calorimeter that is sometimes referred
to as “BigCal”. PAC35 allocated 45 days of beam time for the proposed measurement and recommended a
maximum value of Q2 = 12 GeV2.

These parameters were used to readjust the original plan of measurements which will be made at three
values of Q2 : 5, 8, and 12 GeV2 , while achieving an error in the ratio Gp

E/Gp
M of 0.07. The projected results

are shown in Fig 3, in which we show results from earlier Gp
Emeasurements, and the anticipated errors for the

present GEp experiment. The excellent precision that GEp will obtain even at 12 GeV2 is clearly evident.
Additional measurements at even higher values of Q2 will be evaluated after SBS commissioning.

Figure 3: Gp
E/Gp

M existing measurements and expected statistical accuracy for the GEp experiment. The
projected errors for the measurements made with the Super Bigbite Spectrometer are indicated by the filled
blue squares, corresponding to 45-day run with the recommended highest value of momentum transfer 12
GeV2.

Equipment A schematic representation of the experiment is shown in Fig. 4.

Need to evaluate disconnected diagrams  
and operator improvement term 
Experiments hint at GEp/GMp 0-intersection at Q2=8 GeV2  

(cancellation between F1 and (Q2/4M2)F2) [SNS, Lattice 2016]
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Efficient Calculation of  Disconnected Diagrams

Hierarchical probing [K.Orginos, A.Stathopoulos, ’13] :  
In sum over 2dk+1 vectors (d=3),  
dist(x,y) ≤ 2k terms cancel exactly:

zi �! zi � ⇠ , ⇠(x) = random Z2-vector

1 
X

a

|xa � ya|  2k :
1

N

NX

i

zi(x)zi(y)
† ⌘ 0

reduce variance by treating low modes  
of            exactly [K.Orginos, A.Gambhir]( /D

† /D)

Wide range of momenta is required for (1) form factors;  
(2) RI-MOM renormalization;  
⇒ save all momenta / coordinates

Highly reusable data : hadron structure, 𝜋-𝜋 scattering  
⇒ must be preserved&shared similarly to gauge configurations
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FIG. 11. ZA matrix elements for {Au+d
µ , As

µ}. See the caption of Fig. 10.

a singlet-nonsinglet di↵erence Z̄A � ZA = 0.020(3), using a similar lattice action. In the SU(3) flavor limit, this
corresponds to Z̄A � ZA = 3Zs,u+d

A = 3
2Zu+d,s

A , so that those mixing factors are about twice as large as ours.

IV. AXIAL FORM FACTORS

A. GA form factors

The isovector axial form factor is shown in Fig. 12 (left). From the fit, we find gA = 1.208(6)(16)(1)(10) and
r2A = 0.213(6)(13)(3)(0) fm2, where the uncertainties are due to statistics, excited states, fitting, and renormalization,
respectively. The dominant uncertainty is excited-state e↵ects. The fitted value of gA is quite compatible with the
value taken from the form factor at Q2 = 0, 1.206(7)(19)(0)(10), with slightly smaller uncertainties. The axial charge
was recently determined in a mostly independent calculation using the same ensemble [42], with somewhat higher
statistics and di↵erent methodology. If we examine the bare quantity to avoid di↵erences in renormalization factors,
we get gbareA = 1.401(7)(18)(2), which di↵ers from the result in Ref. [42], gbareA = 1.431(15), by slightly more than
one standard deviation. We can compare the axial radius with the recent reanalysis of neutrino-deuteron scattering
data [24] that found r2A = 0.46(22) fm2. Our result is slightly more than one standard deviation smaller.

Figure 12 (right) shows the light-quark isoscalar form factor Gu+d
A (Q2). The fit yields gu+d

A = 0.517(11)(14)(1)(3)
and (r2A)u+d = 0.197(21)(21)(4)(0) fm2. The statistical errors are relatively much larger than for the isovector case,
and the dominant source of these errors is the connected diagrams. The uncertainty due to renormalization in gu+d

A
is mostly due to the diagonal element of the renormalization matrix; the e↵ect of mixing with strange quarks is very
small.

In Fig. 13 we show the strange and light disconnected axial form factors. The strange axial form factor Gs
A(Q2)

is the most important case for mixing between light and strange axial currents, since it is small and it mixes under
renormalization with Gu+d

A (Q2), which has a contribution from connected diagrams and is much larger. The e↵ect
of this mixing is shown in the left plot: it reduces the magnitude of the form factor by up to 10%, although this
e↵ect is smaller than the total statistical uncertainty. In these plots the block-correlated nature of the statistical
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a singlet-nonsinglet di↵erence Z̄A � ZA = 0.020(3), using a similar lattice action. In the SU(3) flavor limit, this
corresponds to Z̄A � ZA = 3Zs,u+d

A = 3
2Zu+d,s

A , so that those mixing factors are about twice as large as ours.
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FIG. 16. Light and strange isoscalar induced pseudoscalar form factors Gu+d
P (Q2) and Gs

P (Q
2) and the z-expansion fits to them.

In addition, for the light isoscalar form factor, the corresponding form factors for the renormalized connected and disconnected
diagrams are also shown. The left plot shows the form factors with the eta pole removed (which is directly fitted using the z
expansion), and the right plot has the pole restored in the fit curves. The left plot also shows the extrapolations to the eta
pole. See the caption of Fig. 12.

FIG. 17. Connected light isoscalar induced pseudoscalar form factor Gu+d,conn
P (Q2) and the z-expansion fit to it. See the

caption of Fig. 15.

where the eta decay constants are defined9 by h0|Aa
µ|⌘(p)i = fa

⌘ pµ [54]. As Fig. 16 shows, the extrapolation to the
eta pole is rather di�cult and the results have a large uncertainty. Since we have not separately computed the eta
decay constants on this ensemble, we cannot determine the eta-nucleon coupling constant in this way. However, we
can take the singlet-octet ratio f0

⌘/f8
⌘ , which we find to be 0.96(16)(21)(4)(1). This is larger than expected, and three

standard deviations above the value obtained from the phenomenological parameters in Ref. [54], f0
⌘/f8

⌘ = 0.16(3).
In particular, since our pion mass is heavier than physical, we would expect the reduced breaking of flavor SU(3)
symmetry to yield a value closer to zero. This unexpected behavior is likely caused by the di�culty in such a large
extrapolation in Q2; direct calculations of these decay constants such as in Ref. [55] are much more reliable since they
do not require a kinematical extrapolation. If we ignore this issue, and assume the SU(3) relation f8

⌘ = f3
⇡ , then from

G8
P ⌘ (Gu+d

P � 2Gs
P )/

p
6 we obtain an estimate for the eta-nucleon coupling constant, g⌘NN = 5.2(1.0)(1.0)(0.2)(0).

9 Note that using this definition for the pion decay constant would yield f3

⇡ =
p
2F⇡ , where the physical value is f3

⇡ ⇡ 130 MeV.
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FIG. 12. Isovector and light isoscalar axial form factors Gu�d
A (Q2) (left) and Gu+d

A (Q2) (right), and z-expansion fits to them.
The lattice data and the inner error band for the fit show statistical uncertainties, whereas the outer error band for the fit
shows the quadrature sum of statistical and systematic uncertainties. In addition, for the light isoscalar axial form factor, the
corresponding form factors from the renormalized connected and disconnected diagrams are also shown.
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FIG. 13. Disconnected axial form factors. Left: strange form factor, both with the full renormalization matrix and after setting
the mixing with light quarks to zero. Right: strange and disconnected light-quark axial form factors, including z-expansion fits
to them. See the caption of Fig. 12.

uncertainties is clearly visible, particularly at low Q2: the data that are strongly correlated form clusters of nearby
points, but there are large fluctuations between di↵erent clusters. This e↵ect was previously seen in the disconnected
electromagnetic form factors computed using the same dataset [4]. Fits using the z expansion to the strange and
light disconnected form factors are shown in the right plot. From these fits we obtain gsA = �0.0240(21)(8)(2)(7)

and gl,discA = �0.0430(28)(46)(6)(8). The fit has the e↵ect of averaging over several uncorrelated clusters of data,
and produces a considerably smaller uncertainty than the value taken directly from the form factor at Q2 = 0.
The leading uncertainties are statistical and (for the light-quark case) excited-state e↵ects. The uncertainty due to
renormalization is dominated by uncertainty in the o↵-diagonal part of the renormalization matrix. We also obtain
the radii (r2A)s = 0.155(73)(57)(7)(2) fm2 and (r2A)l,disc = 0.248(57)(28)(18)(0) fm2. Within their uncertainties, all of
the squared axial radii are compatible with 0.2 fm2.

JLab isotropic Clover (mπ = 317 MeV) 
[J.Green et at, arxiv:1703.06703]

RI-SMOM with quark loops

Next: extend to quark / gluon  
energy-momentum mixing
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Total Request

[DISCO] disconnected quark loops with HP and deflation, up to one link 
insertions, all momenta, preserve & share similarly to gauge configurations 
[CONN3PT] form factors at high momentum transfer with control of exc.states 
[TMD] TMD and PDF contractions for high-momentum nucleon in- & out-states 

C13 : 323x96 
m𝜋=320 MeV 
a=0.114 fm

D5 : 323x64 
m𝜋=320 MeV 
a=0.080 fm

D6 : 483x96 
m𝜋=170 MeV 
a=0.090 fm

D7 : 643x128 
m𝜋=170 MeV 
a=0.090 fm

REQUEST
[Jpsich]

DISCO 200c * 512 v. 200c * 512 v. 200c * 512 v. 150c * 512v. 33.5M [GPU]

CONN3PT 25,600 samp. 19,200 samp. 25,600 samp. 24,000 samp. 32.6M [GPU]

TMD(contr.) 14,400 samp. 12.0M [CPU]

TOTAL 77.3M



And now for something  
completely different...

[Monthy Python]



Nucleon EDMs, form factors, and proton 
decay amplitudes using domain wall 

fermions 

RBC+LHP proposal 
Yasumichi Aoki, Tom Blum, Taku Izubuchi, Chulwoo Jung, 

Christoph Lehner, Hiroshi Ohki, Eigo Shintani, Amarjit Soni, 
Sergey Syritsyn (PI)

USQCD All-Hands Meeting, Jefferson Lab 
Apr 28-30, 2017 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Electric Dipole Moments of  Nucleons

Motivations to search for new CP-odd interactions 
Evidence for SM Extensions 
Baryogenesis Requirement 
Strong CP problem (θQCD)

~dN = dN
~S

S

H = �~dN · ~E

Role of Lattice QCD : connect quark/gluon-level (effective) operators  
to hadron/nuclei matrix elements and interactions

Leff =
X

n

cn
⇤dn�4

O(dn)
n

dn,p
Fn,p
3 (Q2)

8
><

>:

L(4) = ✓ g2

32⇡2GG̃
L(”6”) =

P
q

⇥
dq q̄(F · �)�5q + d̃q q̄(G · �)�5q

⇤

. . .

(QCD theta-angle)

Quark (chromo-)EDM

(3-gluon, 4-quark, etc)

nEDM from qCEDM Tanmoy Bhattacharya

ig⌃̄⌅̃ µ⇤Gµ⇤ta⌃ ⌥ 2(⌃̄i�5ta⌃) ie
2 ⌃̄⌅̃ µ⇤Fµ⇤ {Q, ta}⌃

Tr [Mta]⌥µ (⌃̄�µ�5⌃) 1
2 ⌥µ (⌃̄�µ�5 {M, ta}⌃)|traceless

Tr
�
MQ2ta⇥ 1

2 F̃µ⇤Fµ⇤ Tr [Mta] 1
2 G̃a

µ⇤Gµ⇤a

1
2 ⌃̄i�5

⇤
M2, ta⌅⌃ Tr

�
M2⇥ ⌃̄i�5ta⌃ Tr [Mta] ⌃̄i�5M⌃

i⌃̄E�5ta⌃E Re⌥µ [⌃̄E�µ�5ta⌃]

Re ⌃̄�5 /⌥ ta⌃E Re ie
2 ⌃̄ {Q, ta} /A(�)�5⌃E

Table 1: Flavor diagonal CP violating dimension 5 operators in the two flavor theory allowed by the BRST
symmetry in Landau gauge. The mass matrix M and the charge matrix Q are assumed real and flavor
diagonal, ta stands for either an isotriplet or an isosinglet diagonal flavor generator. The subscript ‘traceless’
indicates that the flavor trace is subtracted from the anti-commutator. We use the notation ⌃E ⇥ (i /D�m)⌃
for a fermion field that is zero by the equations of motion.

2.1 Operator Basis

In Table 1, we enumerate the CP violating dimension 5 operators allowed by the BRST sym-
metry after gauge fixing to the Landau gauge (or, more generally, to any R⇧ gauge). They include
both gauge invariant operators O that do not vanish by equations of motion, and gauge variant
operators N that do.2 Under renormalization, their mixing structure can be written as

⌥
O
N

�

ren

=

⌥
ZO ZON

0 ZN

�⌥
O
N

�

bare

. (2.3)

In Ref. [9], we describe a momentum subtraction scheme, RI-S̃MOM, that uses the MS quark
masses when they appear explicitly in the operators. This scheme is defined by imposing the
condition that certain projections of the truncated Green’s functions of operators between quark
and gluon states take on their tree-level value. The external momenta are chosen to be symmetric,
non-exceptional and to remove the non-1PI quark contributions. The finite renormalizations that
connect this scheme to the MS scheme in the continuum limit are also provided there.

2.2 Form Factors

The electric dipole moment can be calculated from the matrix element of the electromagnetic
current. In fact, it is one of the zero-momentum electromagnetic form factors. For spin 1/2 particles
like the neutron N, the interaction of the electromagnetic current Vµ(q) is given by the Dirac F1 and
Pauli F2 form factors, the electric dipole form factor F3 and the anapole form factor FA:

⇧N|Vµ(q)|N⌃ = uN

⇧
�µ F1(q2)+ i

[�µ ,�⇤ ]

2
q⇤

F2(q2)

2mN

+(2imN�5qµ � �µ�5q2)
FA(q2)

m2
N

+
[�µ ,�⇤ ]

2
q⇤�5

F3(q2)

2mN

⌃
uN , (2.4)

where uN represents the free neutron spinor and mN is the neutron mass. The Sachs electric and
magnetic form factors are defined in terms of these as GE = F1 � (q2/4M2)F2 and GM = F1 +F2

2At dimension 5, no CP violating operators containing the Fadeev-Popov ghosts are allowed by the BRST symmetry.

4

     ,          EDM form factor �P ��CP      anapole form factor �P
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Experimental Outlook: Neutron EDM

nEDM sensitivity : 
1–2 years : next best limit 
3–4 years : x10 improvement 
7–9 years : x100 improvement

Moore’s Law for Neutron EDM Searches

6

10-28 e cm
CURRENT LIMIT <300
Spallation Source @ORNL < 5
Ultracold Neutrons @LANL ~30
PSI EDM <50 (I), <5 (II)
ILL PNPI <10
Munich FRMII < 5
RCMP TRIUMF <50 (I), <5 (II)
JPARC < 5
Standard Model (CKM) < 0.001

[B.Filippone's talk, KITP 2016]
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Experimental Outlook: Nuclei, Protons, etc

 225Ra : rigid octupole deformation (parity partner at 55 keV)  
+ strong enhancement of P,T-odd 𝛑NN coupling in NN potential 
– connection to CPv parameters (theta, cEDM, ...) 
   depends on ChPT and nuclear models 

Protons and light nuclei (d, t, h) in storage rings : 
+ potential for stat. sensitivity |dp|≲10-29 e·cm  
++ potential to disentangle different sources of CPv 
– not clear if sys. uncertainties may be controlled 
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FIG. 11. EDM summary plot for the neutron (top) and proton (bottom) for 2 and 3 flavor QCD.

Triangles denote results of the current study and include statistical and systematic errors, as

described in the text. Results for other methods are also shown: external electric field (∆E) [46],

and imaginary θ (F3(iθ))[44, 45]. Previous results show statistical errors only. Right-triangle is

result in Nf = 2+ 1+ 1 TM fermion [42] which is including systematic error. The cross symbol in

top panel denotes a range of values from model calculations of neutron EDM based on the baryon

chiral perturbation theory [7, 17, 20].
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chiral perturbation theory [7, 17, 20].
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Phenomenology: |dn| ≃ θQCD ×(few 10-3 e fm)  ⟾ |θQCD| ≲ 1.5×10-10 
Lattice : |dn| ≃ θQCD×(few 10-2 e fm) ⟾ tighter constraint on θQCD ?

[E.Shintani, T.Blum, T.Izubuchi, A.Soni, PRD93, 094503(2015)]
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Phenomenology: |dn| ≃ θQCD ×(few 10-3 e fm)  ⟾ |θQCD| ≲ 1.5×10-10 
Lattice : |dn| ≃ θQCD×(few 10-2 e fm) ⟾ tighter constraint on θQCD ?

Unfortunately, there is a problem:  
unaccounted-for mixing between electric and magnetic moments

[E.Shintani, T.Blum, T.Izubuchi, A.Soni, PRD93, 094503(2015)]
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Nucleon "Parity Mixing" on a Lattice

N = u [uTC�5d]Lattice nucleon operator

Ground state in CPv vacuum

Nucleon propagator hN(t)N̄(0)i��CP = e�EN tei↵�5
�i/pE +mN

2EN
ei↵�5

⇠
�i/pE +mNe2i↵�5

2EN
=

X

�

ũp,�
¯̃up,�

hvac|N |p,�i��CP = ei↵�5up,� = ũp,�

The mixing phase α has to be calculated and removed by field redefinition 
Similar issues may appear in EFT (ChPT) calculations

Solutions to
(/@ +mNe�2i↵�5)ũp = 0
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Nucleon "Parity Mixing" : EDM and aMDM

Nucleon-current correlator spin  
structure in the original works 

[S.Aoki et al (2005), ....]

Correct spin structure 
[SNS, S.Aoki, et al (2017)]

�µ
E = F1�

µ + (F2 + iF3�5)
�µ⌫(p0 � p)⌫

2mN

hNp0 Jµ N̄pi��CP ⇠
X

�0,�

ũp0,�0
�
ūp0,�0�µ

Eup,�

�
¯̃up,�

hNp0 Jµ N̄pi��CP
?⇠
�X

�0

ũ�0 ¯̃u�0
�
p0 �

µ
E
�X

�

ũ�
¯̃u�

�
p

Vector current  
vertex in Euclid

P,T-odd  
(electric dipole f.f.)

... and spurious contributions to  
anomalous mag.moment F2(0) 

electric dipole moment F3(0) 

Solutions to

⇢
“F2” = [cos(2↵)F2 + sin(2↵)F3]true

“F3” = [cos(2↵)F3 � sin(2↵)F2]true

Chiral rotation results in  
"rotation"  in the F2,3 plane

With CPv interaction as a  
perturbation over QCD vacuum

“F3” ⇡ [F3]true � 2↵[F2]true
“dn,p” ⇡ [dn,p]true � 2↵

n,p

2mN

, (1� �4)u = 0
at rest: parity proj. 

(/@ +mN )up = 0

ei↵�5�µei↵�5 $ �µ

e2i↵(“F2” + i“F3”) = (F2 + iF3)true
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Recent Lattice Results on θQCD-induced nEDM

 [C.Alexandrou et al (ETMC), PRD93:074503 (2016]

 [F. Guo et al (QCDSF), PRL115:062001 (2015)] 
dynamical calculations with finite imag. θI angle
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Figure 6: The ratio of form factors F̄ θ̄,n3 /F
θ̄,p
1 for κℓ = κs = 0.12090 and λ = 0.005.
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Figure 5: The phase factor ᾱ(θ̄) as a function of θ̄ for our two sets of quark masses.

where Gθ ΓNJµN(t
′, t; p⃗ ′, p⃗) is the three-point function, with t′ being the time location of the nucleon

sink and t the time location of the current insertion, and the function F(Γ,Jµ) is

F(Γ,Jµ) =
1
4
TrΓ

[

eiα(θ)γ5
Eθ ′γ4 − iγ⃗p⃗ ′ + mθN

Eθ ′
eiα(θ)γ5

]

Jµ

[

eiα(θ)γ5
Eθγ4 − iγ⃗p⃗ + mθN

Eθ
eiα(θ)γ5

]

(15)

with Jµ given in (9). The three-point functions are calculated for various choices of nucleon
polarization, Γ = Γ4, iΓ4γ5γ1, iΓ4γ5γ2 and iΓ4γ5γ3. For Jµ we take the local vector current q̄γµq.

4 Results
In physical units, the pion and kaon masses are 1

κℓ κs mπ [MeV] mK [MeV]
0.12090 0.12090 465(13) 465(13)
0.12104 0.12062 360(10) 505(14)

(16)

To a good approximation 2m2K +m2π = constant, in accord with the leading order chiral expansion
2m2K + m2π = 6 B0 m̄.

At imaginary values of θ, both α(θ) and Fθ3 are imaginary. Thus, we can write

α(θ) = i ᾱ(θ̄) , Fθ3 = i F̄
θ̄
3 . (17)

In Fig. 5 we show the results for the phase factor ᾱ(θ̄), and in Fig. 6 we show the form factor F̄ θ̄,n3
1It is to be noted that the pseudoscalar mass at our flavor symmetric point are somewhat larger than the physical

value
√

(

m2K0 + m
2
K+ + m

2
π+

)

/3 = 413MeV.

7
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 [E.Shintani et al, D78:014503 (2008)],  
uniform Minkowski-real bg. electric field: not affected by the spinor "parity mixing"   
dn=–0.040(28) e fm (~1.4σ) at mπ ≈530 MeV;  Precision is insufficient for comparison

dn=–0.045(06) e fm (~7.5σ)  → +0.008(6) e fm (1.3σ)  
+ zero result confirmed by the authors

[F3]true = “F3” + 2↵F2Correction is simple:

After removing spurious contributions, no significant lattice signal for θQCD-induced nEDM ! 
However, the conflicts with phenomenology value and mq scaling disappears

corrected F3
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Energy Shift vs. Form Factors (Neutron)
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Agreement between the new F3 formula and the energy shift method

No F2 contribution to F3

Large F2 contribution to "F3"

↵D ⇡ 30(0.2)Mixing

↵U ⇡ 0Mixing

“FU
3n” ⇡ [FU

3n]true

"old" F3 mixing  
subtraction

"new" F3 mixing  
subtractionbg. electric 

field result

“FD
3n” = [FD

3n]true � 2↵DF2n

[S.Aoki, SNS, et al (2017) arXiv:1701.07792]
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Quark chromo-EDM: Insertions of  dim-5 Operators

du u

du u

du u

du u

du u

du u

du u

du u

du u

du u

du u

du u

du u

du u

�u ! du �u ! dd �d ! du �d ! dd} }} }

So far: Only quark-connected insertions

du u

du u

du u

du u

du u

du u

du u

du u

du u

du u

Future (hopefully): Single- and double-disconnected diagrams 
(contribute to isosinglet cEDM, mix with θ-term)

L(5) =
X

q

d̃q q̄(G · �)�5q
hN(y) [ ̄�µ ]z N̄(0)

Z
d

4
x q̄(G · �)�5qi

hN(y) N̄(0)

Z
d

4
x q̄(G · �)�5qi

First calculations : [T.Bhattacharya et al(LANL, LATTICE'15,'16]
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Current Results on cEDM-induced nEDM
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connected-only 
bare cEDM operators on a lattice (no renormalization/mixing subtraction) 
statistics = 10,500 samples on 243x64 mπ = 330 MeV DW ensemble
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Request

[EDM] high-statistics calculation of theta- and cEDM-induced p,nEDM 
[FormFac] exploration of required stat. for EDM at the physical point 
[Pdecay] opportunistic calculation to reuse (relatively expensive) chirally 
symmetric light-quark propagators

DSDR 323x64 
m𝜋=250 MeV 
a=0.142 fm

DSDR 323x64 
m𝜋=170 MeV 
a=0.142 fm

DSDR 323x64 
m𝜋=140 MeV 
a=0.200 fm

ID 643x128 
m𝜋=140 MeV 
a=0.090 fm

REQUEST
[Jpsich]

EDM 9,600 samp. 9,600 samp. 6,400 samp. 43.3M [CPU]

FORMFAC 6,400 samp. 16.1M [CPU]

PDECAY 6,400 samp.  6.1M [CPU]

TOTAL 70.1M

At present: continue exploration on 243x64 330 MeV 
Reuse eigenvectors from the HVP/HLbL project
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Current theta-EDM estimate
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243x64 m𝜋=330 MeV, 3,200 samples

|F3| . 0.1 ) |dn|/✓ . 0.01 e · fm
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Nucleon "Parity Mixing" : EDM and aMDM

hNp0 |q̄�µq|Npi��CP = ūp0
⇥
F1�

µ + (F2 + iF3�5)
i�µ⌫(p0 � p)⌫

2mN

⇤
up

LN = N̄
⇥
i/@ �me�2i↵�5 �Q�µA

µ � (̃+ i⇣̃�5)
1

2
Fµ⌫

�µ⌫

2mN

⇤
N

EN (~p = 0)�mN = � 

2mN

~⌃ · ~H � ⇣

2mN

~⌃ · ~E +O(2, ⇣2)

where + i⇣ = e2i↵�5(̃+ i⇣̃)

poles of the Dirac equation with CPv nucleon mass in bg. electric & magnetic fields

Correct identification of  F2,3 in nucleon ME based on parity of the vector current matrix 
element: F1,2 P,T-even, F3 P,T-odd [S.Aoki, SNS, et al (2017) arXiv:1701.07792]

Numerical test: compare EDFF to  
mass shift in uniform bg. electric field

Constant Electric field  
has to be quantized,  Emin =

1

|q
d

|
2⇡

L
x

L
t

Full flux through the  
"side" of the periodic box = q� = 2⇡ · n

with u~p,� ! u�~p,� = �4 u~p,� , (i/p+m)up,� = 0


