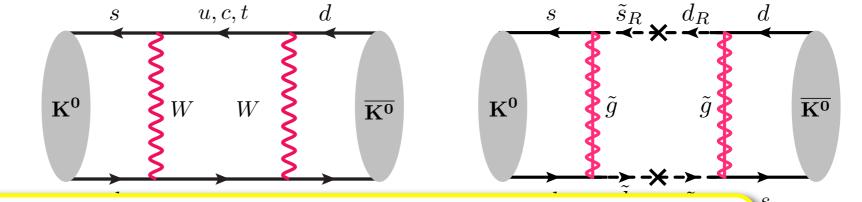

Lattice QCD for the Intensity Frontier

Ruth Van de Water 2015 USQCD All-Hands Meeting

Motivation

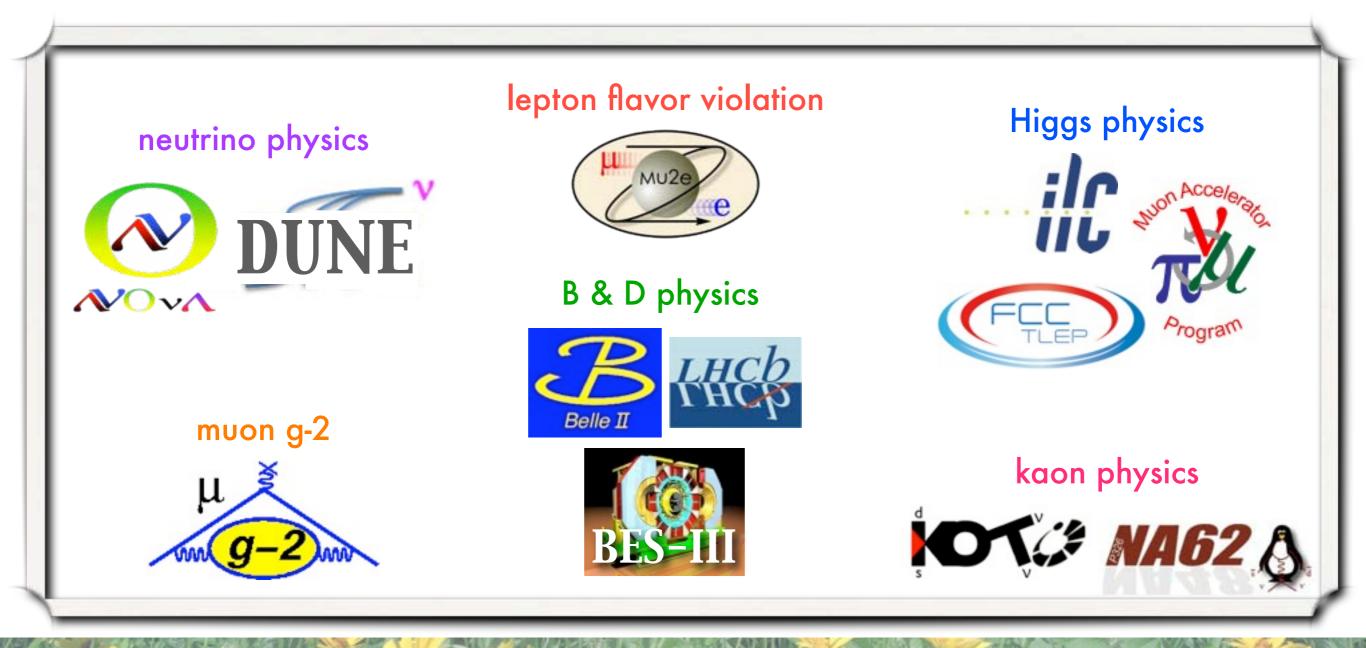
QM loops sensitive to new heavy particles above the TeV scale, e.g.:



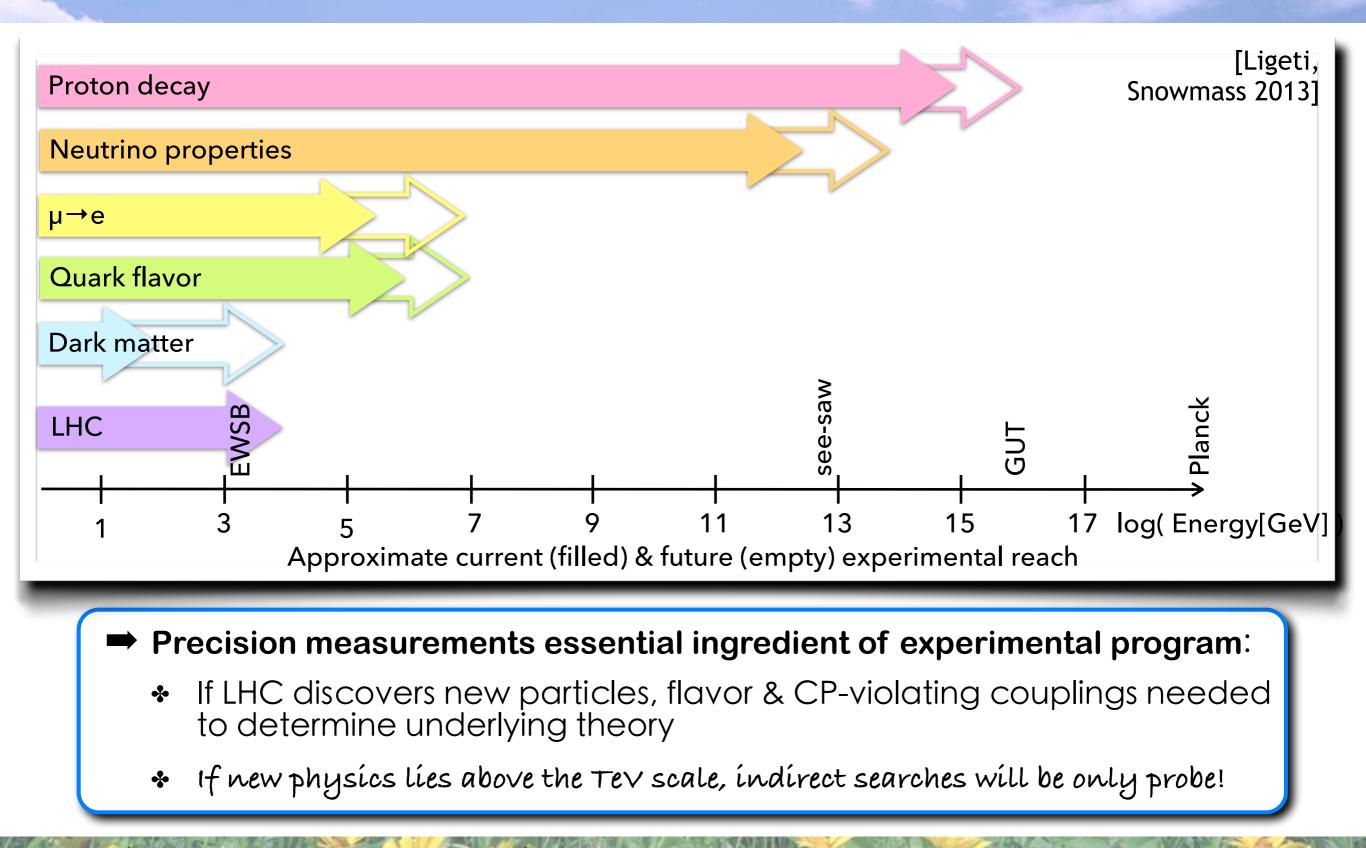
- Study fundamental physics with intense sources and sensitive detectors
- ✦ Target processes where new-physics contributions may be observable:
 - (1) Extremely rare (or even forbidden) in the Standard Model
 - (2) Predicted to high precision in the Standard Model

Motivation

QM loops sensitive to new heavy particles above the TeV scale, e.g.:



- Observation of deviations from Standard-Model expectations requires equally precise theory predictions.
- Maximizing the output of the experimental program requires them on the same time scale!
- Study fundamental physics with intense sources and sensitive detectors
- Target processes where new-physics contributions may be observable:
 - (1) Extremely rare (or even forbidden) in the Standard Model
 - (2) Predicted to high precision in the Standard Model



- Current and planned experiments cover a broad range of topics in HEP/NP
- Here focus on experiments (traditionally) supported by DOE Office of High-Energy Physics

Modern LQCD: progress & prospects

New-physics reach

Complementarity

	LHT	RSc	4G	2HDM	RHMFV
$D^0 - \overline{D}^0 (\text{CPV})$	***	***	**	**	
ϵ_K	**	***	**	**	**
$S_{\psi\phi}$	***	***	***	***	***
$S_{\phi K_S}$		RK	**		
$A_{\rm CP}\left(B \to X_s \gamma\right)$		_	\star		
$A_{7,8}(K^*\mu^+\mu^-)$	- FLAV	UR	**		
$B_s \to \mu^+ \mu^-$	*	*	***	***	**
$K^+ \to \pi^+ \nu \bar{\nu}$	***	***	***		**
$K_L \to \pi^0 \nu \bar{\nu}$	***	$\star\star\star$	***		**
$\mu \to e\gamma$	LEPT		***		
$ au ightarrow \mu \gamma$			***		
$\mu + N \rightarrow e + N$	FLAV		***		
d_n	EDN		\star	***	
d_e		15 * *	*	***	
$(g-2)_{\mu}$	*	**	*		
		** * =	sizeable	e NP effe	cts

[Buras, Acta Phys.Polon.B41:2487-2561,2010]

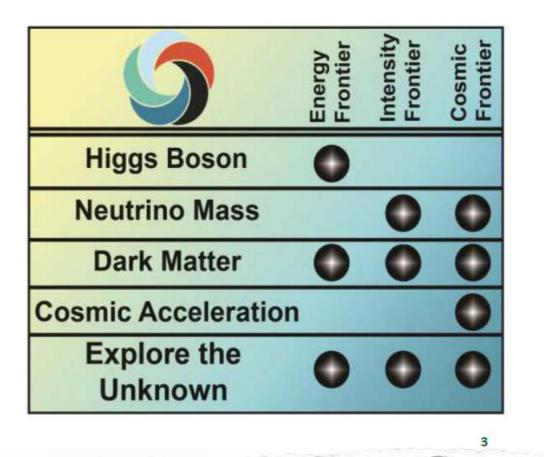
- Different processes & observables sensitive to different new-physics scenarios
 - Pattern of measurements can distinguish between models & constrain model parameters

We do not know where the new physics lies → *cast a wide net!*

Modern LQCD: progress & prospects

USQCD scientific goals and 5-year plan

- USQCD aims to support the US HEP experimental intensity-physics program by "improv[ing] the accuracy of QCD calculations to the point where they no longer limit what can be learned from high precision experiments that seek to test the Standard Model" — USQCD HEP SciDAC-3 proposal
- 2013 White Paper "Lattice QCD at the Intensity Frontier" outlines a program of calculations matched to experimental priorities
 - (1) "Improve the calculation of the matrix elements needed for the CKM unitarity fit"
 - (2) "Calculate ... new, more computationally demanding, matrix elements that are needed for the interpretation of planned (and in some cases old) experiments"
- Target quantities and precision goals developed with input from experimentalists and phenomenologists


P5 science drivers

P5 identified science drivers: intertwined & not prioritized

Enabling the Next Discovery

Science drivers identify the scientific motivation while the Research Frontiers provide a useful categorization of experimental techniques

Experimental landscape after P5

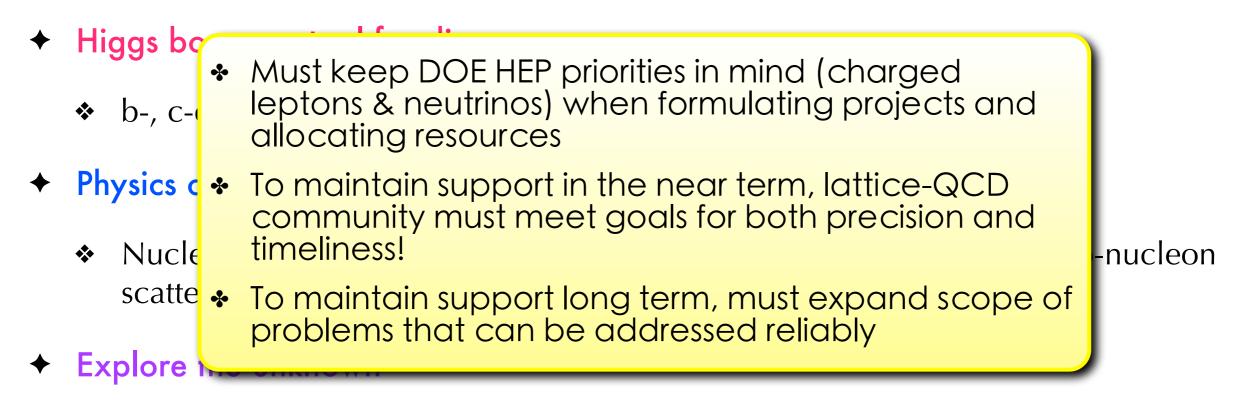
+ HEP program narrowly focused on **smaller portfolio of prioritized experiments**

The FY 2016 HEP Budget Request

- HEP is implementing the strategy detailed in the May 2014 report of the Particle Physics Project Prioritization Panel (P5), formulated in the context of a global vision for the field
 - HEP Addresses the five compelling science drivers with research in three frontiers and related efforts in theory, computing and advanced technology R&D
 - Increasing emphasis on international partnerships (such as LHC) to achieve critical physics goals
- Energy Frontier: Continue LHC program with higher collision energy (13+ TeV)
 - The U.S. will continue to play a leadership role in LHC discoveries by remaining actively engaged in LHC data analysis and the initial upgrades to the ATLAS and CMS detectors
- Intensity Frontier: Develop a world-class U.S.-hosted Long Baseline Neutrino Facility
 - Continue the design process for an internationalized LBNF and development of a short baseline neutrino program that will support the science and R&D required to ensure LBNF success
 - Fermilab will continue to send world's highest intensity neutrino beam to NOvA, 500
 miles away to Ash River, MN
- Cosmic Frontier: Advance our understanding of dark matter and dark energy
 - Immediate development of new capabilities continue in dark matter detection with baselining of 2nd-generation experiments; and in dark energy exploration with baselining of DESI and fabrication of LSST camera.

DOE HEP Program Status - 4/6/2015 20

P5 impact on LQCD program


- ◆ In budget scenarios A & B, US HEP program involves the following (*and not much else*):
 - Continued US involvement in LHC (upgrade identified as highest priority) and cosmic frontier
 - g-2, Mu2e , and neutrinos at Fermilab
- ◆ No room for ORKA (K⁺ → $\pi^+\nu\nu$) or *Project X* (K⁰ → $\pi^0\nu\nu$, EDMs, neutron-antineutron oscillations, ...)
- Participation in Japanese ILC only if "external" funds can be obtained
- ✦ Domestic experimental program primarily charged leptons and neutrinos
 - Goal for Fermilab to be global leader in neutrinos with LBNE as the flagship project
 - No domestic quark-flavor physics, although US will participate in Belle II and LHCb

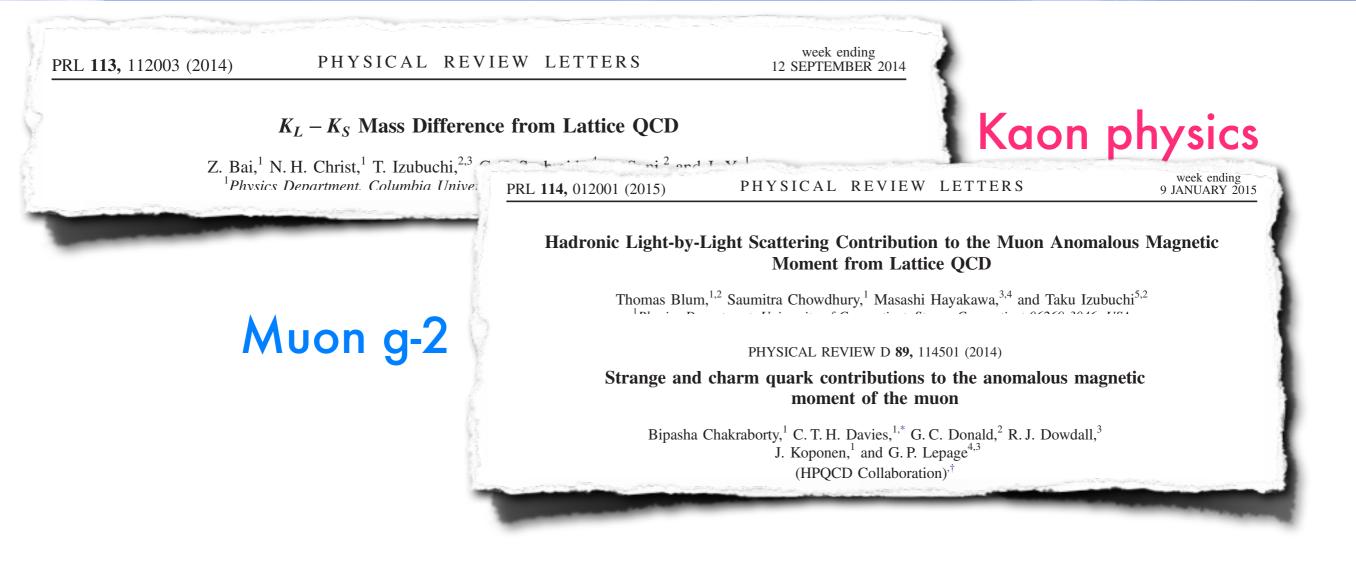
What can USQCD do for HEP?

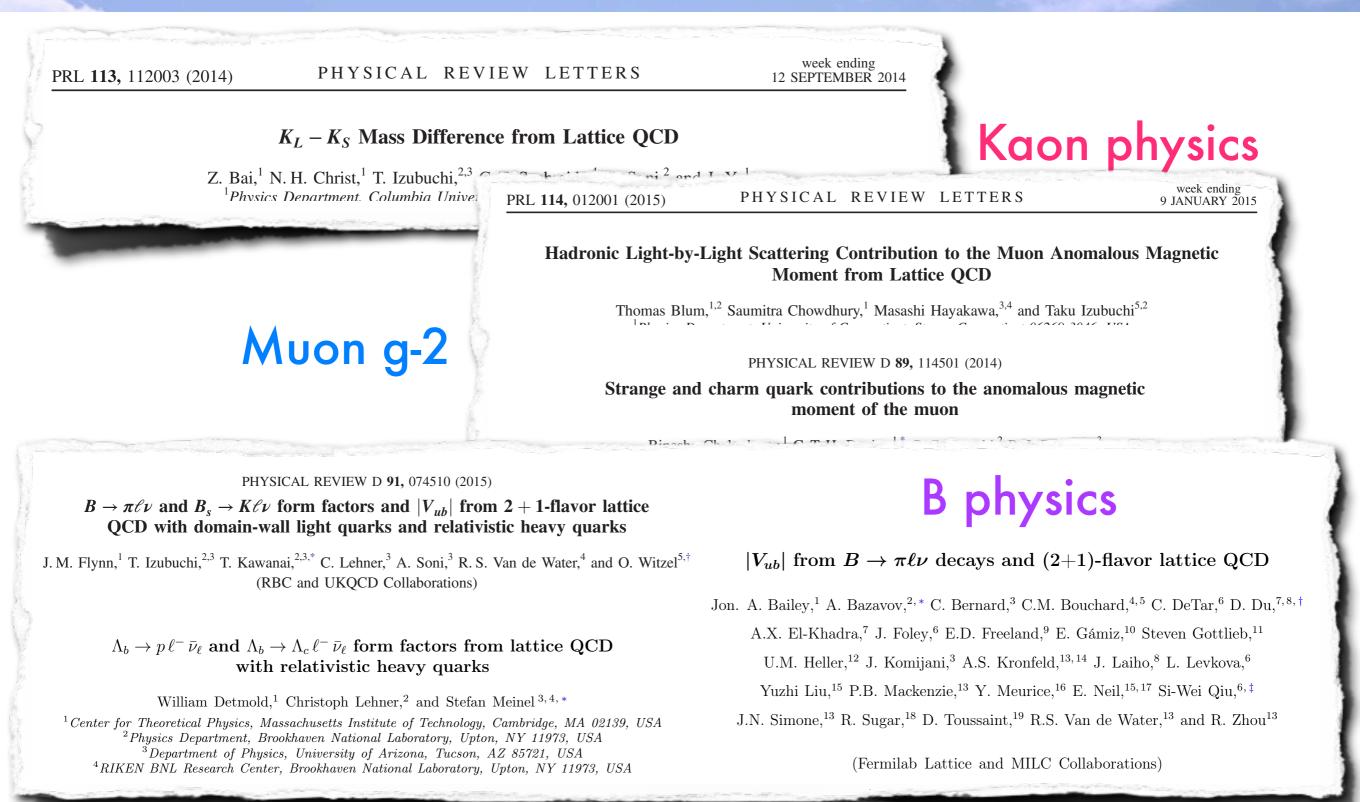
- Incomplete list of quantities aligned with science drivers that we can and should attack immediately
- + Higgs boson as tool for discovery
 - ◆ b-, c-quark masses and strong coupling for precision Higgs predictions
- Physics of neutrino mass
 - Nucleon axial-vector form factor for CCQE scattering (+ other neutrino-nucleon scattering matrix elements)
- Explore the unknown
 - ◆ Quark flavor-changing matrix elements for CKM tests, rare decays, ...
 - ✤ Hadronic contributions to muon g-2
 - Light- and strange-quark content of nucleon for $\mu \rightarrow e$ conversion

What can USQCD do for HEP?

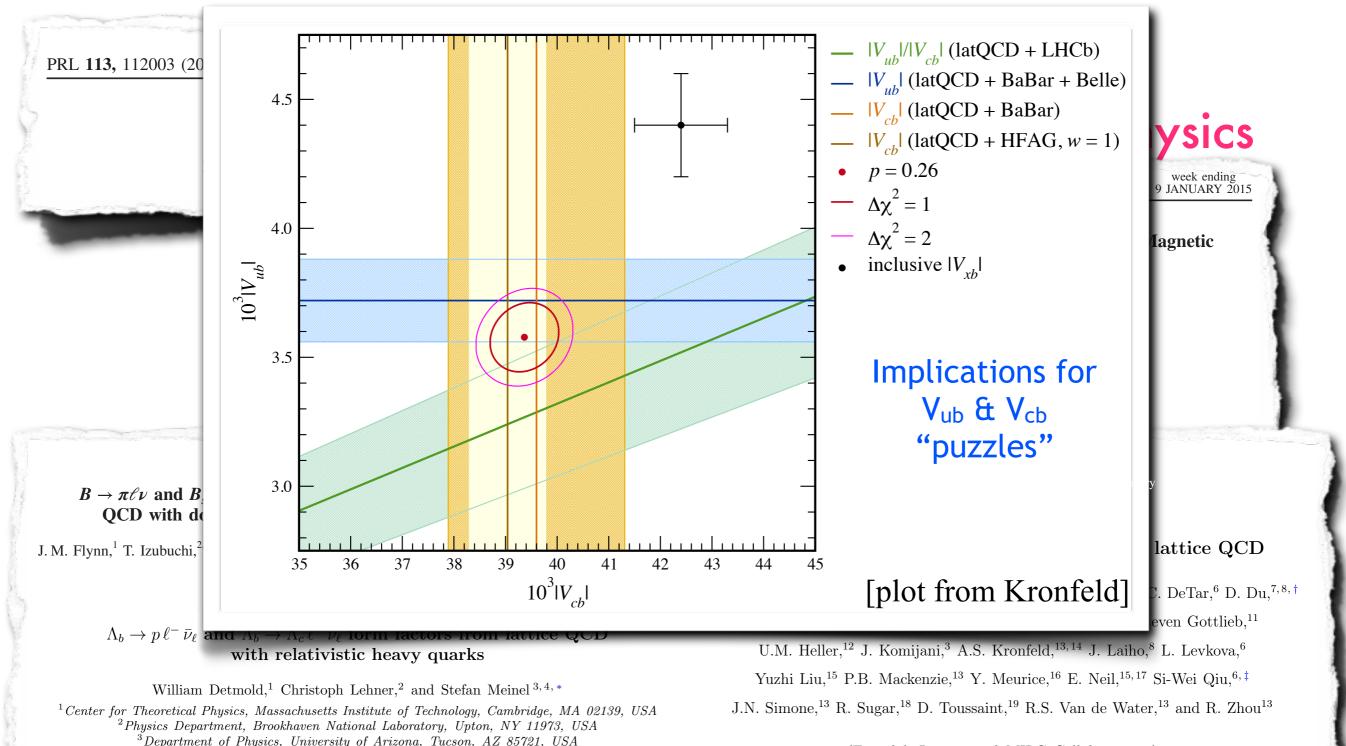
 Incomplete list of quantities aligned with science drivers that we can and should attack immediately

- Quark flavor-changing matrix elements for CKM tests, rare decays, ...
- Hadronic contributions to muon g-2
- Light- and strange-quark content of nucleon for $\mu \rightarrow e$ conversion

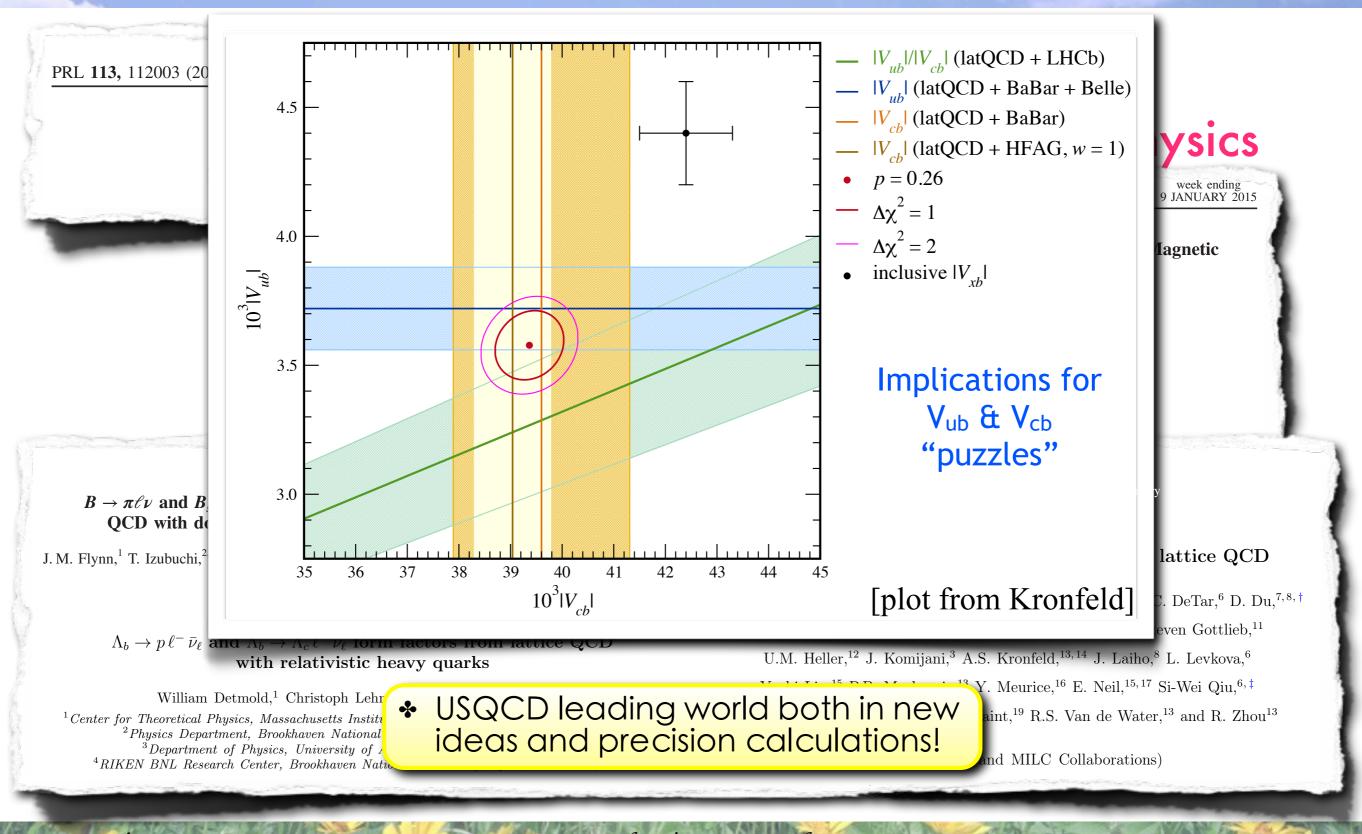

PRL **113,** 112003 (2014)


PHYSICAL REVIEW LETTERS

week ending 12 SEPTEMBER 2014


 $K_L - K_S$ Mass Difference from Lattice QCD

Z. Bai,¹ N. H. Christ,¹ T. Izubuchi,^{2,3} C. T. Sachrajda,⁴ A. Soni,² and J. Yu¹ ¹Physics Department. Columbia University. New York. New York 10027. USA Kaon physics


Lattice QCD for the intensity frontier

(Fermilab Lattice and MILC Collaborations)

⁴RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973, USA

Lattice QCD for the intensity frontier

SPC summary & perspective

2015 project requests

(EDM & f_A IF or NP?)

- <u>Aubin</u>: Hadronic contributions to the muon g-2 using staggered fermions
- Blum (RBC): Calculation of nucleon EDMs induced by quark chromo-electric dipole moments
- <u>Feng (RBC/UKQCD</u>): Exploratory lattice calculation of the rare kaon decays
- Ishikawa (RBC): Neutral B meson mixing with static heavy and domain-wall light quarks at the physical point
- <u>Izubuchi</u> (*RBC/UKQCD*): Hadronic vacuum polarization contributions to g-2 on physical point Mobius-DWF ensemble using zMobius, AMA, MADWF, and GPU
- <u>Kronfeld</u> (*Fermilab/MILC*): The nucleon axial-vector form factor at the physical point with the HISQ ensembles
- ◆ Laiho (*HPQCD*,*Fermilab*/*MILC*): Muon g-2 hadronic vacuum polarization from 2+1+1 flavors
- Lehner (*RBC*): QCD + QED studies using twist-averaging
- <u>Mackenzie</u> (*Fermilab/MILC*): Standard-model parameters and the search for physics beyond the Standard Model with HISQ
- ★ <u>Mawhinney</u> (*RBC/UKQCD*): Production of 2+1+1 flavor MDWF lattices
- Shigemitsu (HPQCD): High-Precision Heavy-Quark Physics
- <u>Soni</u> (*RBC*): Improved precision for B physics with physical-mass DW light quarks and relavistic b quarks
- <u>Sugar</u> (*MILC*): QCD with Four Flavors of Highly Improved Staggered Quarks fermions

2015 project requests

(EDM & f_A IF or NP?)

WF

- <u>Aubin</u>: Hadronic contributions to the muon g-2 using staggered fermions
- Blum (RBC): Calculation of nucleon EDMs induced by quark chromo-electric dipole moments
- Feng (RBC/UKQCD): Exploratory lattice calculation of the rare kaon decays
- ◆ Jobikawa (PRC). Neutral P meson mixing with static beaux and damain well light quarks at the physical point

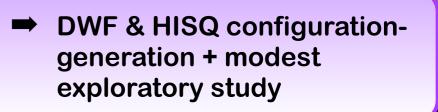
Total Requests

- **397** M Jpsi core-hours core-hours ANL BG/Q (134% full-priority time)
- 128% ANL BG/Q zero-priority time
- 📲 🛋 125M Jpsi core-hours core-hours BNL BG/Q (108% available BNL time)
- 460M Jpsi core-hours clusters (102% available cluster time)
 - 111M Jpsi core-hours GPUs (17% total GPU time)
 - = 67% available USQCD resources (excludes zero-priority)
- <u>Shigemitsu</u> (*HPQCD*): High-Precision Heavy-Quark Physics
- <u>Soni</u> (*RBC*): Improved precision for B physics with physical-mass DW light quarks and relavistic b quarks
- <u>Sugar</u> (*MILC*): QCD with Four Flavors of Highly Improved Staggered Quarks fermions

กังว่าหยังของเซอยู่เขาใช้สองไซ่ก็ชักรากาสหรับการ์กับจังกำในแห่ง

(Also showing relevant USQCD efforts using outside resources)

- ✤ PION AND KAON PHYSICS
 - Decay constants & light-quark masses (Mawhinney, Sugar)
 - ★ B_{K} , K→ π lν, K→ $\pi\pi$ (Mawhinney)
 - $K \rightarrow \pi v v$ long-distance matrix elements (Feng)


✤ B AND D MESON PHYSICS

- D_(s)-meson decay constants & form factors (HPQCD, Mackenzie)
- B_(s)-meson decay constants & mixing matrix elements (HPQCD, Ishikawa, Mackenzie, Soni)
- B_(s)-meson form factors (Mackenzie, Shigemitsu, Soni)

HIGGS PHYSICS

- b-, c-quark masses & strong coupling (HPQCD, Mackenzie)
- ✤ Muon g-2
 - HVP (Aubin, Izubuchi, Laiho)
 - HLbL (Lehner)
- NEUTRINO PHYSICS (Kronfeld)
- NUCLEON EDMS (Blum)

- ✤ PION AND KAON PHYSICS
 - Decay constants & light-quark masses (Mawhinney, Sugar)
 - $B_{K}, K \rightarrow \pi I \nu, K \rightarrow \pi \pi (Mawhinney)$
 - $K \rightarrow \pi v v$ long-distance matrix elements (Feng)
- ✤ B AND D MESON PHYSICS
 - D_(s)-meson decay constants & form factors (HPQCD, Mackenzie)
 - B_(s)-meson decay constants & mixing matrix elements (HPQCD, Ishikawa, Mackenzie, Soni)
 - B_(s)-meson form factors (Mackenzie, Shigemitsu, Soni)
- HIGGS PHYSICS
 - b-, c-quark masses & strong coupling (HPQCD, Mackenzie)
- ✤ Muon g-2
 - HVP (Aubin, Izubuchi, Laiho)
 - HLbL (Lehner)
- NEUTRINO PHYSICS (Kronfeld)
- NUCLEON EDMS (Blum)

- ✤ PION AND KAON PHYSICS
 - Decay constants & light-quark masses (Mawhinney, Sugar)
 - $B_{K}, K \rightarrow \pi I \nu, K \rightarrow \pi \pi (Mawhinney)$
 - $K \rightarrow \pi v v$ long-distance matrix elements (Feng)

✤ B AND D MESON PHYSICS

- D_(s)-meson decay constants & form factors (HPQCD, Macken)
- B_(s)-meson decay constants & mixing matrix elements (HPQC
- B_(s)-meson form factors (Mackenzie, Shigemitsu, Soni)
- HIGGS PHYSICS
 - b-, c-quark masses & strong coupling (HPQCD, Mackenzie)
- ✤ Muon g-2
 - HVP (Aubin, Izubuchi, Laiho)
 - HLbL (Lehner)
- NEUTRINO PHYSICS (Kronfeld)
- NUCLEON EDMS (Blum)

 DWF & HISQ configurationgeneration + modest exploratory study

 1 large project (covering many topics), 2 modest projects (RBC static & relativistic), 1 small request

- ✤ PION AND KAON PHYSICS
 - Decay constants & light-quark masses (Mawhinney, Sugar)
 - $B_{K}, K \rightarrow \pi I \nu, K \rightarrow \pi \pi (Mawhinney)$
 - $K \rightarrow \pi v v$ long-distance matrix elements (**Feng**)
- ✤ B AND D MESON PHYSICS
 - D_(s)-meson decay constants & form factors (HPQCD, Macken)
 - B_(s)-meson decay constants & mixing matrix elements (HPQC
 - B_(s)-meson form factors (Mackenzie, Shigemitsu, Soni)
- HIGGS PHYSICS
 - b-, c-quark masses & strong coupling (HPQCD, Mackenzie)
- ✤ Muon g-2

R. Van de Water

- HVP (Aubin, Izubuchi, Laiho)
- HLbL (Lehner)
- NEUTRINO PHYSICS (Kronfeld)
- ✤ NUCLEON EDMS (Blum)

 DWF & HISQ configurationgeneration + modest exploratory study

- 1 large project (covering many topics), 2 modest projects (RBC static & relativistic), 1 small request
 - ➡ New FNAL/MILC project

- ✤ PION AND KAON PHYSICS
 - Decay constants & light-quark masses (Mawhinney, Sugar)
 - $B_{K}, K \rightarrow \pi I \nu, K \rightarrow \pi \pi (Mawhinney)$
 - $K \rightarrow \pi v v$ long-distance matrix elements (**Feng**)

✤ B AND D MESON PHYSICS

- D_(s)-meson decay constants & form factors (HPQCD, Macken)
- B_(s)-meson decay constants & mixing matrix elements (HPQC
- B_(s)-meson form factors (Mackenzie, Shigemitsu, Soni)
- HIGGS PHYSICS
 - b-, c-quark masses & strong coupling (HPQCD, Mackenzie)
- ✤ MUON g-2
 - HVP (Aubin, Izubuchi, Laiho)
 - HLbL (Lehner)
- NEUTRINO PHYSICS (Kronfeld)
- ♦ NUCLEON EDMS (Blum)

 3 large-scale proposals for HVP with different actions & methods + modest exploratory study relevant for HLbL

 DWF & HISQ configurationgeneration + modest exploratory study

- 1 large project (covering many topics), 2 modest projects (RBC static & relativistic), 1 small request
 - ➡ New FNAL/MILC project

(Also showing relevant USQCD efforts using outside resources)

- ✤ PION AND KAON PHYSICS
 - Decay constants & light-quark masses (Mawhinney, Sugar)
 - $B_{K}, K \rightarrow \pi I \nu, K \rightarrow \pi \pi (Mawhinney)$
 - $K \rightarrow \pi v v$ long-distance matrix elements (**Feng**)

✤ B AND D MESON PHYSICS

- D_(s)-meson decay constants & form factors (HPQCD, Macken)
- B_(s)-meson decay constants & mixing matrix elements (HPQC
- B_(s)-meson form factors (Mackenzie, Shigemitsu, Soni)
- HIGGS PHYSICS
 - b-, c-quark masses & strong coupling (HPQCD, Mackenzie)
- ✤ MUON g-2

R. Van de Water

- HVP (Aubin, Izubuchi, Laiho)
- HLbL (Lehner)
- NEUTRINO PHYSICS (Kronfeld)
- NUCLEON EDMS (Blum)

- 3 large-scale proposals for HVP with different actions & methods + modest exploratory study relevant for HLbL
 - Both nucleon projects modest

 DWF & HISQ configurationgeneration + modest exploratory study

- 1 large project (covering many topics), 2 modest projects (RBC static & relativistic), 1 small request
 - New FNAL/MILC project

Strong points of 2015 IF proposals

- USQCD work on muon g-2 exciting!
 - ★ Theoretical methods for HVP contribution in place → now have first proposals for large-scale calculations with physical pions and fine lattice spacings
 - USQCD leading world in strategies for HLbL
- New USQCD effort on heavy-quark masses & strong coupling
- Entire program benefitting greatly from DWF & HISQ ensembles with physical pion masses
 - Enabling (sub)-percent precision for quark-flavor calculations needed to obtain CKM matrix elements and constrain the CKM unitarity triangle
 - Essential for g-2, nucleon matrix elements, for which chiral perturbation theory is unreliable / unavailable
- Planned DWF & HISQ ensembles over next 5 years will include dynamical QED and isospin-breaking (HISQ)
 - Isospin-breaking needed to go below ~1% level for HVP
 - ✤ QED essential for complete calculation of HLbL contribution to muon g-2

Considerations & provocations

- SPC recommends to EC allocations to deliver science objectives outlined in white papers
 - Proposal-driven process
 - Highly constrained by submitted proposals & available resources
- 1. How to balance configuration generation & analysis? Are configuration-generation projects sufficiently far ahead that they can be temporarily slowed-down to make room for analysis?
- 2. How to balance supporting mature "high-priority" projects and exploratory work that will drive our future program?
- **5.** How equally should we "spread the pain"? May be better for USQCD long term to prioritize some projects (i.e. close to fully fund) and de-prioritize others. How to do this without alienating USQCD members and undermining sense of community?
- 4. How much duplication is needed? (Independent checks needed, but can't afford "too much" redundancy.)

Considerations & provocations

- SPC recommends to EC allocations to deliver science objectives outlined in white papers
 - Proposal-driven process
 - Highly constrained by submitted proposals & available resources
- 1. How to balance configuration generation & analysis? Are configuration-generation projects sufficiently far ahead that they can be temporarily slowed-down to make room for analysis?

Questions? Comments

ts and exploratory work that

- 2. How to balance supporting will drive our future program?
- **5.** How equally should we "spread the pain"? May be better for USQCD long term to prioritize some projects (i.e. close to fully fund) and de-prioritize others. How to do this without alienating USQCD members and undermining sense of community?
- 4. How much duplication is needed? (Independent checks needed, but can't afford "too much" redundancy.)