High-Statistics Calculation of Nucleon Structure and Matrix Elements on Isotropic Clover Lattices

Combined LHP & NME Proposal

LHP: S.Syritsyn(PI), J.Green, M.Engelhardt, N.Hasan, S.Krieg, J.Negele, S.Meinel, A.Pochinsky

NME: R.Gupta(PI), T.Bhattacharya, V.Cirigliano, B.Joo, H.-W.Lin, D.Richards, F.Winter, B.Yoon,

(|LHP**)** + |NME**)**): K.Orginos

USQCD All-Hands Meeting, Fermilab May 1-2, 2015

Nucleon Structure with Isotropic Wilson Lattices

Goal : Compute Nucleon Structure and Quark Matrix Elements with high statistical precision and robust control of systematic errors

Wilson fermions are economical and permit

- higher statistics for better precision and noisy observables (TMDs, GPDs)
- experiments with newer techniques
 - controlling excited states
 - computing disconnected diagrams
 - exploring hadron states with high momentum

JLab Isotropic clover-improved Wilson lattices:

ID	a[fm]	Volume	mπ	$m_{\pi}L$	Traj. available	Conn.cost per conf.[NMEp]	%%	
D4	0.085	32 ³ x64	400	5.5	5100	500		
D5	0.081	32 ³ x64	300	4.0	2600	825	~20%	Systematics study [NMEp]
D6	0.080	48 ³ x96	190	3.7	700	7,125		
D7	0.080	64 ³ x128	190	4.9	900 (++ by 07/01)	32,055	~80%	proposed in [LHPp]
D8	0.080	64 ³ x128	140	4.1	Started	Next Year	· (hop	efully)

S. Syritsyn (LHP), R. Gupta (NME)

Nucleon Structure Scientific Objectives

In the Joint proposal, we will study (topics as expressed by in the initial proposals)

LHP (before'15 : DWF with RBC)	NME (before'15 : Wilson on HISQ)				
Vector (EM) Form Factors $G_{E,M}$ (including high momenta Q^2) and Radii $(r^2_{E,M})^{p,n}$					
Axial Vector Form Factors $G_{A,P}$ and Axial Coupling g_A					
Scalar and Tensor Charges $(g_{S,T})^{u-d}$					
Generalized Form Factors, Moments of PDFs, Nucleon Spin					
Ordinary and Transverse Momentum- Dependent Parton Distributions					
	Quark (chromo)EDM-induced nEDM				

Wilson Fermions will make affordable

Variational analysis of Exc.States			
	Study dep. on a, L, m_{π} (≥190 MeV)		
Including Disconnected (light & strange) Quark Contractions			

Nucleon "Charges" gA,S,T

[(P)N(D)ME, Lattice'14]

- $g_{S,T}$ "charges" = couplings to BSM physics in precision meas. of β -decay [LANL]
- Clover-improved Wilson valence quarks on HISQ lattices
- Extrapolation in *a*, *L*, m_{π} : $g(a, m_{\pi}, L) = g^0 + \alpha a + \beta m_{\pi}^2 + \gamma e^{-m_{\pi}L}$

S. Syritsyn (LHP), R. Gupta (NME)

Nucleon Structure with Wilson Clover Lattices

Nucleon Vector (EM) Form Factors

$$\langle P+q | \bar{q}\gamma^{\mu}q | P \rangle = \bar{U}_{P+q} \Big[F_1(Q^2) \gamma^{\mu} + F_2(Q^2) \frac{i\sigma^{\mu\nu}q_{\nu}}{2M_N} \Big] U_P$$

• Form Factors: (F_1 / F_2) scaling, (G_E/G_M) , *u-,d*-contributions

m_π=149 MeV data vs Phenomenology [J.Green et al(LHP), PRD90:074507(2014)]

Proton radius: 7σ difference;
JLab pRAD, MUSE (e[±],μ[±]-p)

S. Syritsyn (LHP), R. Gupta (NME)

Nucleon Structure with Wilson Clover Lattices

USQCD All-Hands Meeting, Fermilab, May I & 2

 e^{\pm} . μ^{\pm}

 $\gamma(Q^2)$

Nucleon Axial Form Factors

$$\langle P+q | \bar{q}\gamma^{\mu}\gamma^{5}q | P \rangle = \bar{U}_{P+q} \left[G_A(Q^2) \gamma^{\mu}\gamma^{5} + G_P(Q^2) \frac{\gamma^{5}q^{\mu}}{2M_N} \right] U_P$$

• $G_A(Q^2)$ are measured in *v*-scattering, π -production;

implications for neutrino flux norm. in IceCube, etc

Axial radius (r_A²)=12 / m_A²: model dependence varying nuclear / G_A shape models: m_A=0.9 ... 1.4 GeV

Strange quark G^s_{A,P}(Q²) : MiniBooNE

• $G_P(Q^2)$ induced pseudoscalar : μ capture (MuCAP)

Physical m_{π} , chiral quarks [LHP & RBC collabs, Lattice'14]

S. Syritsyn (LHP), R. Gupta (NME)

Nucleon Structure with Wilson Clover Lattices

Nucleon Gen. F.F.s and Nucleon Spin

LHPC '10 (DWF $N_f = 2 + 1$) **PRELIM** $N_f = 2 + 1$ DWF (LHP&RBC)

0.5

 $-\overline{4} - \overline{4} - \overline{5} -$

0.4

$$\langle N(p+q) | T^{q,glue}_{\mu\nu} | N(p) \rangle \to \Big\{ A_{20}, B_{20}, C_{20} \Big\} (Q^2) \langle x \rangle_q = A^q_{20}(0) J_{q,glue} = \frac{1}{2} \Big[A^{q,glue}_{20}(0) + B^{q,glue}_{20}(0) \Big]$$

$$\begin{cases} J_{\text{glue}} + \sum_{q} J_{q} = \frac{1}{2} ,\\ J_{q} = \frac{1}{2} \Delta \Sigma_{q} + L_{q} \end{cases}$$

0.3

 $m_{\pi}[GeV]$

ETMC '13 (Twisted Mass $N_f = 2(+1+1)$

QCDSF '12 (Wilson-clover $N_f = 2$)

LHPC '10 (Asqtad+DWF $N_f = 2 + 1$)

 L_{u+d}, Σ_{u+d}

0.6

S. Syritsyn (LHP), R. Gupta (NME)

0.2

0.6

0.5

0.4

0.3

0.2

0.1

0.0

-0.1

-0.2

0.1

 J_q^{conn}

Nucleon Structure with Wilson Clover Lattices

Transverse Momentum-Dependent Distributions

Non-local lattice operator

$$\Phi(b, P, S, \hat{\zeta}, \mu) = \frac{1}{2} \langle P, S | \bar{q}(0) \Gamma \mathcal{U}(\eta v, b) q(b) | P, S \rangle$$

with spacelike link path $\mathcal{U} = \underbrace{ \int_{0}^{\perp} \int_{0}^{\perp} \int_{0}^{\perp} \int_{0}^{=} \int_{0}^{\eta v + b} \int_{$

Nucleon Structure with Wilson Clover Lattices USQCD All-Han

Improvements

Calculation Details and Improvements

Kinematics to access high-momentum form factors :

- include $|p_{sink}| \sim 1 \text{ GeV}^2$ (up to $Q^2 \sim 4 \text{ GeV}^2$ in Breit frame)
- TMDs also require high momentum in-,out-states $|p_{sink}| = |p_{source}|$
- Variational method to reduce excited states :
 - 2x2 nucleon correlators with varied source smearing
 - optimize nucleon operators both zero/low and high momentum states
- Improved sampling with All-Mode-Averaging :
 - exact low-mode deflation OR truncated multigrid solver
 - ~4,000 (exact+sloppy) samples for the lightest m_{π} =190 MeV
- Disconnected quark loops (light and strange) with variance reduction :
 - hierarchical probing
 - low-eigenmode deflation

Improvements

Nucleon Excited States and SNR

Multi-exp. fits of *T*-dependence : determined by the largest *T* Variational method: (-)expensive ~(N_{op})², (+)greatly extend plateaus [CSSM]
Proposal : explore and compare cost / benefit variational vs traditional

Improvements

Disconnected Quark Contractions

Hierarchical probing [K.Orginos, A.Stathopoulos, '13]: In sum over 2^{dk+1} vectors (d=3), dist(x,y) $\leq 2^{k}$ terms cancel exactly: $1 \leq \sum_{i} |x_{a} - y_{a}| \leq 2^{k}$: $\frac{1}{N} \sum_{i}^{N} z_{i}(x) z_{i}(y)^{\dagger} \equiv 0$ $z_{i} \xrightarrow{a} z_{i} \odot \xi$, $\xi(x) = \text{random } Z_{2}\text{-vector}$

 NEW: reduce variance by treating low modes of (D[†]D) exactly [K.Orginos et al]

Disconnected diagrams with JLab isotropic Clover [S.Meinel's USQCD project '13; in prep.]

Request

Total Request for the Joint Proposal

Computing resources request was updated to reflect non-overlapping goals in the proposals :

- LHP requested 43M
- NME requested 47M

Computing resources request was updated to reflect non-overlapping goals in the proposals :

- [common] connected and disconnected 3pt correlators on the lightest pion ensemble m_{π} =190 MeV : **32.8M**
- [NMEp] calculations with the heavier pion masses: +8.2M
- [LHPp] additional contractions (GFFs, TMDs) the lightest pion ensemble: +9.5M
- [common] exploration of variational method and source tuning: +6M

Total combined request : 56.5M

Summary

- High-statistics, high precision nucleon structure calculations with very wide scope
 - proton form factors and charge radius
 - proton spin puzzle
 - applications to BSM and CPV searches
 - parton distributions
- Exploration of new techniques crucial for calculations at the physical point
- Equal emphasis on Connected and Disconnected (Light and Strange) contributions to the nucleon structure

We are hopeful that the USQCD will support not only this proposal, but also generation of physical point Wilson-clover lattices

