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continue to reduce lattice errors. How this can be done is one of the two major topics in the
following section, and Table I shows forecasts for the improvements that are possible.

In addition, there are several existing and many upcoming experiments that need various
hadronic matrix elements in order to determine the SM “background” to new physics. Many
of these require harder lattice calculations. Three examples of important matrix elements
are (i) the long-distance contribution to the long-measured neutral kaon mass splitting,
�mK , which can in principle provide a window onto new physics if we can calculate the
SM contribution; (ii) the hadronic vacuum-polarization and light-by-light contributions to
muon g � 2, which must be computed in order to allow the search for new physics from the
upcoming experimental measurement at Fermilab; and (iii) nucleon matrix elements of a
kind similar to the decay constants and form factors of mesons, which enter several arenas
at the energy and cosmic frontiers. LQCD methods to support these experiments are either
in hand or under active development. Discussion of these LQCD calculations forms the
second major topic of the following section.

IV. FUTURE LATTICE CALCULATIONS

In this section we describe a broad program of LQCD calculations that will be possible over
the next five years assuming that computer resources increase following Moore’s law. We
have organized this program according to physics topic or class of experiments for which
the calculations are needed. In each subsection, we explain the physics goals and their
relationship to the experimental program, describe the status of present LQCD calculations,
and explain what can be achieved over the next five years. Technical details providing
detailed justification for future forecasts are provided in Appendices A and B.

While the challenges to further reductions in errors depend on the quantity, there are many
common features. A key advance over the next five years will be the widespread simulation
of physical u and d quark masses, obviating the need for chiral extrapolations. Such simu-
lations have already been used for studies of the spectrum and several matrix elements with
improved Wilson sea quarks [23, 37, 38]. USQCD is generating ensembles with physical
masses for light sea quarks with highly-improved staggered quarks (HISQ) [39], domain-
wall fermions (DWF) [40, 41], and improved Wilson fermions [42, 43]. Indeed, this e↵ort is
already well under way, as explained in Sec. V. These ensembles will also lead to reduced
discretization errors compared to earlier ensembles (e.g., the MILC asqtad ensemble [19])
because the actions are more highly improved.

A second advance will be the systematic inclusion of isospin-breaking and electromagnetic
(EM) e↵ects. Once calculations attain percent-level accuracy, as is the case at present for

quark masses, fK/f⇡, the K ! ⇡ and B ! D⇤ form factors, and B̂K , one must study the
e↵ects of EM and isospin breaking. A partial and approximate inclusion of such e↵ects is
already made for light quark masses, f⇡, fK and B̂K . Full inclusion would require nondegen-
erate u and d quarks and the incorporation of QED into the simulations. For some quantities
it may su�ce to implement this only for the valence quarks (quenched QED), while in gen-
eral one must also include mass di↵erences and electrical charges for the sea quarks. One
approach for both isospin and unquenched QCD+QED simulations is to reweight pure QCD
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QCD+QED: importance of valence e�ects

Example: dynamical QCD+QED contribution of BMW 2014

Neutron–proton mass splitting (in figure for artificially large e2)

Dashed line is obtained
from free fermion plus QED
one-loop finite-volume pole
mass shift. -10
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Figure S8: Finite-volume effects in baryon isospin splittings. The dependence is always consistent with the
universal behavior of Eq. (26) (dashed lines).
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Figure 1: The proton-neutron mass splitting as a function of volume, taken
from Ref. [2]

Therefore also in this case one is able to perform a lattice QCD+QED com-
putation with negligible finite-volume errors by putting the valence structure
(and in particular the photons) explicitly in infinite volume.

For these reasons we suggest that the twist-averaging procedure followed
in this proposal should exhibit substantially suppressed finite-volume e↵ects
in lattice QCD+QED simulations.

2.2 Diagrams

In Fig. 4 we show the quark-connected contributions to the pion mass split-
ting. This should be contrasted with Fig. 5, taken from [5], that lists the
quark-connected diagram contributions to the QED corrections to f⇡. We
note that the computation of f⇡ diagrams (a), (b), and (c) is for the purpose
of the discussion below identical to the diagrams for the QED mass splitting.

In the case of the disconnected diagrams, topologies (a), (b), (d), (e)
are also present for the QED mass splitting. Therefore, we suggest that
the methods discussed below will allow for an e↵ective computation of both
observables with shared resources.

For the computation of f⇡, there is an additional complication since the
inclusion of real soft photon emission diagrams is necessary to remove an IR
divergence. Reference [5] proposes to use e↵ective field theory to subtract the

3

BMWc 2014
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that it will be possible to generalize the methodology to include four particle states; several
groups are actively working on the theoretical issues. It is unclear at this stage, however,
what time-scale one should assign to this endeavor.

Mixing occurs in the D-D̄ system, although there is no clear evidence yet for CP violation
in this mixing [4]. As noted above, the short-distance contributions can be calculated for
D mesons using LQCD, as for kaons and B-mesons. The challenge, however, is to calculate
the long-distance contributions. As in the case of �MK discussed above, there are two
insertions of the weak Hamiltonian, with many allowed states propagating between them.
The D system is much more challenging, however, since, as for the decay amplitudes, there
are many strong-interaction channels having E < mD. Further theoretical work is needed
to develop a practical method.

The light-cone distribution function encodes the part of the Fock state wave function needed
for high-energy exclusive processes, in particular nonleptonic B decays, such as B ! K⇡,
B ! ⇢⇢, etc. Moments of the distribution function can be expressed as hadron-to-vacuum
matrix elements of local operators. The leading moment is proportional to the decay con-
stant, and the first one or two nontrivial moments have been calculated for ⇡, ⇢, �, K,
and K⇤ with errors of order 10% for nf = 2 [75] and nf = 2 + 1 [76]. These results are
already useful for B decays to these light mesons, and similar results for the moments of the
B-meson distribution amplitude should be straightforward.

B. Charged lepton physics: Muon g � 2 and Mu2e

During the next five years, two important muon experiments will be mounted and carried out
in the US. For one of them, a new measurement of the muon’s anomalous magnetic moment,
the largest theoretical uncertainties by far come from nonperturbative QCD. The other, a
search for muon-to-electron conversion, aims to observe charged lepton-flavor violation for
the first time. If successful, it would be evidence for a non-SM interaction, and lattice QCD
calculations would be needed to interpret the nature of this interaction. Here, we discuss
how lattice QCD relates to these two experiments.

1. Muon anomalous magnetic moment 2

The muon anomalous magnetic moment provides one of the most precise tests of the Stan-
dard Model of particle physics (SM) and often places important constraints on new theories
beyond the SM [1]. The current discrepancy between experiment and the Standard Model
has been reported in the range of 2.9–3.6 standard deviations [77–79]. With new experi-
ments planned at Fermilab (E989) and J-PARC (E34) that aim to improve on the current
0.54 ppm measurement at BNL [80] by at least a factor of 4, it will continue to play a central
role in particle physics for the foreseeable future.

2 This topic is also discussed in the companion white paper Lattice QCD for Cold Nuclear Physics.

18

Owing to the nonperturbative nature of QCD, the hadronic corrections to the muon g�2 are
the largest source of error in the SM calculation. These errors must be reduced to leverage
the new experiments [1]. The hadronic corrections enter at order ↵2 through the hadronic
vacuum polarization (HVP), shown in Fig. 4, and ↵3 through hadronic light-by-light (HLbL)
scattering, shown in Fig. 5, as well as higher order HVP contributions.

The HVP contribution to the muon anomaly has been precisely computed to an accuracy of
0.6% using experimental measurements of e+e� ! hadrons and ⌧ ! hadrons [78, 79]. The
result including ⌧ data is about 2 standard deviations larger than the pure e+e� contribu-
tion, and reduces the discrepancy with the Standard Model to 2.4 standard deviations [78].
The former requires isospin corrections which may not be under control. Alternatively,
⇢-� mixing may explain the di↵erence and bring the ⌧ -based result in line with that from
e+e� [81]. LQCD calculations serve as an important independent check on these results, but
at the moment statistical errors on lattice calculations of aµ(HVP) are at about the 3–5%
level [82–87], and important systematic errors remain. Most significant is that, for light
quark masses, the errors on the low-momentum region of ⇧(Q2) are not small enough, nor
are there su�cient points available in the crucial region, Q2 ⇠ m2

µ, to adequately estimate
aµ(HVP). Quark masses are still too heavy (and errors are still too large for light masses),
so fits are model-dependent. The good news is that all of these points are being addressed
in the latest calculations. Lattice calculations using model independent fit functions [88],
noise reduction techniques [89], twisted boundary conditions [87], charmed sea quarks [90],
and physical light quark masses on large lattices are underway. Large error reductions over
the next one to two years are not only possible, but likely. To get to the 1% level, or better,
disconnected diagrams like the one shown on the right in Fig. 4 and isospin breaking e↵ects
must be incorporated to complete the calculation. At this level, the lattice QCD calculation
becomes competitive with the traditional one based on e+e� and ⌧ data, and may provide
insight into the discrepancy between the two. Finally, we note that the HVP lattice calcu-
lation can be used to compute the QCD running of the fine structure constant, which plays

FIG. 4. Hadronic vacuum polarization diagrams contributing to the muon anomaly. The horizontal

lines represent the muon. The blobs formed by the quark loops represent all possible hadronic

intermediate states. Right panel: disconnected quark line contribution.

FIG. 5. Hadronic light-by-light scattering diagrams contributing to the muon anomaly. The

horizontal lines represent the muon. The blobs formed by the quark loops represent all possible

hadronic intermediate states. Right panel: one of the disconnected quark line contributions.
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Introduction to the method



Uµ(x)

Uµ(x)

Uµ(x)

Uµ(x)

Uµ(x)

Uµ(x)

Ψ(x + L̂1 + L̂2) Ψ(x + 2L̂1 + L̂2) Ψ(x + 3L̂1 + L̂2)

Ψ(x + L̂1) Ψ(x + 2L̂1) Ψ(x + 3L̂1)

Valence fermions Ψ living on a repeated gluon background Uµ with
periodicity L1, L2 and vectors L̂1 = (L1, 0), L̂2 = (0, L2)

arXiv:1503.04395QCD setup

3 / 18



Let ψθ be the quark fields of your finite-volume action with
twisted-boundary conditions

ψθ
x+L = e iθψθ

x .

Then one can show that

〈
Ψx+nLΨ̄y+mL

〉
=

∫ 2π

0

dθ

2π
e iθ(n−m)

〈
ψθ
x ψ̄

θ
y

〉
, (1)

where the 〈·〉 denotes the fermionic contraction in a fixed
background gauge field Uµ(x). (4d proof available.)

This specific prescription produces exactly the setup of the
previous page, it allows for the definition of a conserved current,
and allows for a prescription for flavor-diagonal states.

arXiv:1503.04395
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+

Example: QED mass correction on a lattice in finite volume

1

p2 + m2
C (p) = + α

∑

k∈BZ4

1

p2 + m2

1

(p − k)2 + m2

1

p2 + m2

1

k
2

with pµ = 2 sin(pµ/2)

Strategy: compute C (x) =
∑

p∈BZ4 e ipxC (p) in finite-
volume and perform effective-mass fit
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Twist-averaged version:

e ik(y+mL)
〈
Ψx+nLΨ̄y+mL

〉 〈
Ψy+mLΨ̄z+lL

〉

=

∫ 2π

0

dθ

2π

∫ 2π

0

dθ′

2π
e ik(y+mL)e iθ(n−m)+iθ′(m−l)

〈
ψθ
x ψ̄

θ
y

〉〈
ψθ′
y ψ̄

θ′
z

〉
,

Perform sum over m using Poisson’s summation formula yields

∑

m

e ik(y+mL)
〈
Ψx+nLΨ̄y+mL

〉 〈
Ψy+mLΨ̄z+lL

〉

= e iky
∫ 2π

0

dθ

2π

∫ 2π

0

dθ′

2π
e iθn−iθ

′l δ̂(k − (θ − θ′)/L)
〈
ψθ
x ψ̄

θ
y

〉〈
ψθ′
y ψ̄

θ′
z

〉
,

with δ̂(k) = 2π
L

∑
n∈N δ(k + 2πn/L).

TA yields momentum conservation of twists
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Example: QED mass correction on a lattice in finite volume

plus TA

1

p2 + m2
C (p) = +α

〈 ∑

k∈BZ4

1

p2 + m2

1

(p − k ′)2 + m2

1

p2 + m2

1

k ′
2

〉

θ4

with pµ = 2 sin(pµ/2) and k ′µ = kµ + θµ/Lµ

Strategy: compute C (x) =
∑

p∈BZ4 e ipxC (p) in finite-
volume and perform effective-mass fit
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Proposed studies

∆mπ

Finite-volume errors

General FV problem of QCD+QED
simulations. However, for HVP com-
putations this was no issue (see
HPQCD 2014 error budget):

J. Koponen et al. / Nuclear Physics B Proceedings Supplement 00 (2014) 1–4 5

Set amsea
l amsea

s am�s ZV,s̄s L/a � T/a ncfg � nsrc

1 0.01300 0.0650 0.54024(15) 0.9887(20) 16 � 48 1020 � 12
2 0.00235 0.0647 0.52680(8) 0.9887(20) 32 � 48 1000 � 12
3 0.01020 0.0509 0.43138(12) 0.9938(17) 24 � 64 526 � 16
4 0.00507 0.0507 0.42664(9) 0.9938(17) 24 � 64 1019 � 16
5 0.00507 0.0507 0.42637(6) 0.9938(17) 32 � 64 988 � 16
6 0.00507 0.0507 0.41572(14) 0.9938(17) 32 � 64 300 � 16
7 0.00507 0.0507 0.42617(9) 0.9938(17) 40 � 64 313 � 16
8 0.00184 0.0507 0.42310(3) 0.9938(17) 48 � 64 1000 � 16
9 0.00740 0.0370 0.31384(9) 0.9944(10) 32 � 48 504 � 16

10 0.00120 0.0363 0.30480(4) 0.9944(10) 64 � 96 621 � 16

Table 1: Lattice ensembles used in this study, made by MILC collaboration [5, 6]. The first two sets are “very coarse” (lattice spacing a � 0.15 fm),
sets 3� 8 are “coarse” (a � 0.12 fm) and sets 9� 10 are “fine” (a � 0.09 fm) ensembles. amsea

l and amsea
s are the sea light and strange quark masses

in lattice units and am�s is the �s meson mass. ZV,s̄s is the vector current renormalisation constant. L and T are the spatial and temporal extents of
the lattice. ncfg is the number of configurations and nsrc is the number of time sources used in this study.

as
µ ac

µ

Uncertainty in lattice spacing (w0, r1): 1.0% 0.6%
Uncertainty in ZV : 0.4% 2.5%

Monte Carlo statistics: 0.1% 0.1%
a2 � 0 extrapolation: 0.1% 0.4%

QED corrections: 0.1% 0.3%
Quark mass tuning: 0.0% 0.4%

Finite lattice volume: < 0.1% 0.0%
Padé approximants: < 0.1% 0.0%

Total: 1.1% 2.7%

Table 2: Error budgets for connected contributions to the muon anomaly aµ from vacuum polarization of s and c quarks. See [1] for more detailed
discussion on the estimation of the errors.

as/c
µ dispersion HPQCD ETMC RBC/UKQCD

+ expt (prelim.) (prelim.)
as
µ � 1010 55.3(8) 53.4(6) 53(3) 52.4(2.1)

ac
µ � 1010 14.4(1) 14.4(4) 14.1(6) –

Table 3: Comparison with other results. The dispersion relation + experiment results are from [3] and [12]; HPQCD results are from [1] (moments
used for ac

µ were calculated in [9, 10]); ETMC results are from [11]; RBC/UKQCD results are from [13].

Benefit of treating the valence photon in infinite volume

q q

=
��
0 d(q2)f (q2)

�
1
q2

q + k

k

�(q ! 0)

�

= �̂(q2)

Blum 2002

9 / 30

For LBL a similar decomposition would be much more challenging

24 / 29

Figure 3: Standard procedure to compute the HVP contribution.
Example: QED corrections to e�ective masses

+ + = C0(t) + �C1(t)

We could compute QED mass-shifts from

me�(t) = me�,0(t) + �me�,1(t) , me�,1(t) =
C1(t)

C0(t)
� C1(t + 1)

C0(t + 1)
.

Following the prescription and adding
Dµ�

G (q2) = �µ�/q2 + (1 � ⇠)qµq�/(q2)2 yields photons in infinite
volume and no 1/Ln FV e�ects for QED.

The setup is similar to the HVP computation discussed above
(conserved vector currents yielding a q2 suppression of the QCD
amplitudes) but for the above figure we need four twist angles (per
dimension).

19 / 22

Figure 4: Quark-connected electro-magnetic mass splitting diagrams.

momenta and from the inclusion of disconnected diagrams.
Next we explicitly give two options:

1. The stochastic wall-source method that explicitly puts photons and
valence quarks in infinite volume and allows for a unified computation
of all diagrams. The statistical noise of this method is, however, not
su�ciently known.

2. A method based on the periodic-plus-antiperiodic trick in all spatial
directions, thereby generating a symmetric (11fm)4 box for the 323⇥64
DSDR ensemble. This method has potential significant remnant finite-
volume errors but is very likely free of a stochastic noise problem.

We will also explore other methods that to di↵erent degrees interpolate
between the two.

2.3.1 Stochastic wall-source method

In this section we describe the stochastic wall-source method. Let us define

⌦t,t0(✓) = ⌘†
t D̃

�1(✓)⌘t0 , (1)

5
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FIG. 5: Connected diagrams contributing at O(�) contribution to the amplitude for the decay

⇡+ ! �+�l.

Having determined A0 and hence the amplitude ū�� �(p��)(M0)�� v� �(p�), the O(�0) con-

tribution to the decay width is readily obtained

�tree
0 (�+ ! �+��) =

G2
F |Vud|2f 2

⇡

8�
m⇡ m2

�

�
1 � m2

�

m2
⇡

�2

. (20)

In this equation we use the label tree to denote the absence of electromagnetic e�ects since

the subscript 0 here indicates that there are no photons in the final state.

B. Calculation at O(�)

We now consider the one-photon exchange contributions to the decay �+ ! �+�� and

show the corresponding six connected diagrams in Fig. 5 and the disconnected diagrams in

Fig. 6. By “disconnected” here we mean that there is a sea-quark loop connected, as usual,

to the remainder of the diagram by a photon and/or gluons (the presence of the gluons is

implicit in the diagrams). The photon propagator in these diagrams in the Feynman gauge

and in infinite (Euclidean) volume is given by

�µ��(x1, x2) = �µ�

Z
d4k

(2�)4

eik·(x1�x2)

k2
. (21)

In a finite volume the momentum integration is replaced by a summation over the mo-

menta which are allowed by the boundary conditions. For periodic boundary conditions,

we can neglect the contributions from the zero-mode k = 0 since a very soft photon does
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FIG. 6: Disconnected diagrams contributing at O(�) contribution to the amplitude for the decay

⇡+ ! �+�l. The curly line represents the photon and a sum over quark flavours q, q1 and q2 is to

be performed.

not resolve the structure of the pion and its e�ects cancel in �0 � �pt
0 in Eq. (3). Although

we evaluate �0 + �1(�E) (see Eq. (2)) in perturbation theory directly in infinite volume,

we note that the same cancellation would happen if one were to compute �1(�E) also in a

finite volume. Moreover from a spectral analysis we conclude that such a cancellation also

occurs in the Euclidean correlators from which the di�erent contributions to the decay rates

are extracted. For this reason in the following �0 and �pt
0 are evaluated separately but using

the following expression for the photon propagator in finite volume:

�µ��(x1, x2) = �µ�
1

L4

X

k= 2�
L

n; k �=0

eik·(x1�x2)

4
�

� sin2 k�

2

, (22)

where all quantities are in lattice units and the expression corresponds to the simplest lattice

discretisation. k, n, x1 and x2 are four component vectors and for illustration we have taken

the temporal and spatial extents of the lattice to be the same (L).

For other quantities, the presence of zero momentum excitations of the photon field is a

subtle issue that has to be handled with some care. In the case of the hadron spectrum the

problem has been studied in [22] and, more recently in [3, 4], where it has been shown, at

O(�), that the quenching of zero momentum modes corresponds in the infinite-volume limit

to the removal of sets of measure zero from the functional integral and that finite volume

Figure 5: Quark-connected (top) and quark-disconnected (bottom) dia-
grams for f⇡.

where ⌘t will be Z2⌦Z2 wall sources at time t and ⌦ is a 12⇥12 matrix and

h(⌘t)
†
x(⌘t0)x0i = �t,t0�x,x0 . (2)

The Dirac operator with ✓-twisted boundary conditions D(✓) is here written
in terms of a constant background gauge

D̃�1(✓)xy = e�i✓x/LD�1
xy (✓)ei✓y/L (3)

for future convenience.
We start with the leading order topology of the pion two-point function

with valence fermions in infinite volume. While this does not yet include the
important photon contribution, it serves to illustrate the method proposed

6

21

FIG. 9: Radiative corrections to the pion-lepton vertex. The diagrams represent O(�) contribu-

tions to �pt
0 . The left part of each diagram represents a contribution to the amplitude and the

right part the tree-level contribution to the hermitian conjugate of the amplitude. The correspond-

ing diagrams containing the radiative correction on the right-hand side of each diagram are also

included.
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FIG. 10: Diagrams contributing to �1(�E). For diagrams (c), (d) and (e) the “conjugate” con-

tributions in which the photon vertices on the left and right of each diagram are interchanged are

also to be included.

and r� = m�/m⇡. These diagrams correspond to the diagrams Fig. 5(e) and Fig. 5(f) in the

composite pion case.

Next we give the contributions to �1(�E) where the real photon is emitted and absorbed

by the pion (��), the charged lepton (��) or emitted by the pion and absorbed by the lepton

or vice-versa (��). The results are presented in the Feynman gauge:

X

r

��µ(k, r) ��(k, r) = gµ� , (43)

where �µ(k, r) are the polarisation vectors of the real photon carrying a momentum k, with

k2 = 0 in Minkowski space.

• Real photon emission, ��: The contribution to �1(�E) from the emission and absorption
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Figure 6: Soft-photon emission in e↵ective field theory.

in Ref. [1] in a simple example. We refer to Ref. [1] for further details on
the method. We write the correlation function as

C(z) =

Z ⇡

�⇡
dp e�ipzC(p) (4)

=

Z ⇡

�⇡
dp

Z 2⇡

0

d✓1
2⇡

d✓2
2⇡

X

x2V1

Tr �5D
�1
x0 (✓1)�5D

�1
0x (✓2)e

ip(x�z) (5)

=

Z ⇡

�⇡
dp✓

1

L

X

pPBC

Z 2⇡

0

d✓1
2⇡

d✓2
2⇡

X

x2V

Tr �5D
�1
x0 (✓1)�5D

�1
0x (✓2)

⇥ eipPBC(x�z)eip✓(x�z)/L 2⇡

L
�̂(p✓ + ✓1 � ✓2) , (6)

=
2⇡

L2

X

pPBC

Z 2⇡

0

d✓1
2⇡

d✓2
2⇡

X

x2V

Tr �5D̃
�1
x0 (✓1)�5D̃

�1
0x (✓2)

⇥ eipPBCxeiz((✓1�✓2)/L�pPBC) , (7)

where we decompose p = 2⇡n/L + p✓/L ⌘ pPBC + p✓/L. The projection to
zero momentum at the sink now naturally requires the sum over z in infinite-
volume. If we do this, however, we force the two twist angles to coincide.
This would require designated twist-angle solves for each diagram to enforce
momentum conservation. More importantly, each twist angle requires an
additional Lanczos invocation, which we prefer to avoid. We therefore sum
at the sink with an appropriate slowly varying phase, which should still to
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Hadronic light-by-light scattering contribution to the muon anomalous magnetic
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The form factor that yields the light-by-light scattering contribution to the muon anomalous
magnetic moment is computed in lattice QCD+QED and QED. A non-perturbative treatment of
QED is used and is checked against perturbation theory. The hadronic contribution is calculated
for unphysical quark and muon masses, and only the diagram with a single quark loop is computed.
Statistically significant signals are obtained. Initial results appear promising, and the prospect for
a complete calculation with physical masses and controlled errors is discussed.

INTRODUCTION

The muon anomaly aµ provides one of the most strin-
gent tests of the standard model because it has been
measured to great accuracy (0.54 ppm) [1], and calcu-
lated to even better precision [2–4]. At present, the dif-
ference observed between the experimentally measured
value and the standard model prediction ranges between
249 (87) ⇥ 10�11 and 287 (80) ⇥ 10�11, or about 2.9 to
3.6 standard deviations [2–4]. In order to confirm such
a di↵erence, which then ought to be accounted for by
new physics, new experiments are under preparation at
Fermilab (E989) and J-PARC (E34), aiming for an accu-
racy of 0.14 ppm. This improvement in the experiments,
however, will not be useful unless the uncertainty in the
theory is also reduced.

Table I summarizes the contributions to aµ from
QED [2], electroweak (EW) [5], and QCD sectors of the
standard model. The uncertainty in the QCD contri-
bution saturates the theory error. The precision of the
leading-order (LO) hadronic vacuum polarization (HVP)
contribution requires sub-percent precision on QCD dy-
namics, reached using a dispersion relation and either
the experimental production cross section for hadrons
(+�) in e+e� collisions at low energy, or the experimental
hadronic decay rate of the � -lepton with isospin breaking
taken into account. Meanwhile lattice QCD calculations
of this quantity are improving rapidly [6], and will pro-
vide an important crosscheck.

Unlike the case for the HVP, it is di�cult, if not im-
possible, to determine the hadronic light-by-light scat-
tering (HLbL) contribution (Fig. 1), aµ(HLbL), from ex-
perimental data and a dispersion relation [7]. So far,
only model calculations have been done. The uncertainty
quoted in Table I was estimated by the “Glasgow consen-
sus” [8]. Note that the size of aµ(HLbL) is the same order
as the current discrepancy between theory and experi-
ment. Thus, a first principles calculation, which is sys-

TABLE I. The standard model contributions to the muon
g�2, scaled by 1010; the QED contribution up to O(�5), EW
up to O(�2), and QCD up to O(�3), consisting of the leading-
order (LO) HVP, the next-to-leading-order (NLO) HVP, and
HLbL. For the LO HVP three results obtained without (the
first two) and with (the last) � � hadrons are shown.

QED 116 584 71.8 951 (9)(19)(7)(77) [2]
EW 15.4 (2) [5]
QCD LO HVP 692.3 (4.2) [3]

694.91 (3.72) (2.10) [4]
701.5 (4.7) [3]

NLO HVP �9.79 (9) [9]
HLbL 10.5 (2.6) [8]

tematically improvable, is strongly desired for aµ(HLbL).
In this paper, we present the first result for the magnetic
form factor yielding aµ(HLbL) using lattice QCD.

FIG. 1. Hadronic light-by-light scattering contribution to
the muon g � 2, where the grey part consists of quarks and
gluons. The wavy lines denote photons, and the dashed arrow
line represents the muon.
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Figure 7: Light-by-light contribution to (g � 2)µ

a good degree eliminate overlap with non-zero momentum states. We find

C(zt) =
X

~z2V

e�i~z((~✓1�~✓2)/LC(z) (8)

/
Z 2⇡

0

d✓1
2⇡

d✓2
2⇡

X

x2V |xt=�zt

Tr �5D̃
�1
x0 (✓1)�5D̃

�1
0x (✓2) . (9)

This can now e�ciently be evaluated using

C(t) = hTr �5⌦t,0(✓1)�5⌦0,t(✓2)i✓1,✓2 , (10)

where the average is now also over independent four-dimensional twists ✓1
and ✓2.

Next, we turn to a diagram including a photon exchange. As an example,
we may obtain a photon self-energy diagram such as (a) of Fig. 5 by replacing

⌦t,0(✓1) !
X

t0,t00
⌦t,t0(✓1)�µ⌦

⇠
t0,t00(✓3)�µ⌦

⇠
t00,0(✓1)�t0,t00(✓1 � ✓3) (11)

with

⌦⇠
t,t0(✓) =

X

x,y

(⇠t)x(⌘†
t )x(D̃�1(✓))xy(⌘t0)y , (12)

and

�t0,t00(✓) =
X

x,y2V

(⇠t0)x�(✓)x�y(⇠t00)y (13)
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Main focus of this proposal

1. Volume-dependence of QCD + QED simulations using the TA
method

2. Control stochastic noise introduced by twisting

For 1) we propose a study on RBC’s 16c and 24c ensemble for
a−1 = 1.73 GeV and mπ = 422 MeV (all parameters identical
apart from volume).

For 2) we propose the computation on the new RBC ensemble 17
(32c, DSDR, zMobius, a−1 = 1.15 GeV, mπ = 140 MeV)

In the future we hope to complete this study by generating a
partner ensemble for the 32c ensemble to study the
volume-dependence at physical pion mass.

13 / 18



Strategy

Two methods are explicitly spelled out in the proposal:

I P+A twist averaging in spatial directions which will be safe
regarding 2) but may not achieve the goals in 1)

I Full stochastic twist averaging which has a higher probability
to achieve the goals in 1) but may suffer from 2)

The proposal main text explicitly works out a strategy using
stochastic A2A propagators

14 / 18



SPC questions



1. Table 1 only appears to include the cost estimate for a
single ensemble (the 323 DSDR with mpi 135 MeV and
1/a=1.1 GeV). What is the estimated cost for analyzing
the other ensembles? Given that you plan to test
multiple methods on the 163 ensemble, presumably this
cost, although small, is not negligible.

The cost for the $m_pi=420 MeV$, 24c ensemble is

Lanczos 1.2 hours on 1024 BC1 cores (compared to 28.7 hours for the 32c)

Exact solve 0.07 hours on 1024 BC1 cores (compared to 1.13 hours for the 32c)

Sloppy solve 0.02 hours on 1024 BC1 cores (compared to 0.21 hours for the 32c)

The cost for the 16c ensemble is estimated to be 16^3*32/(24^3*64) \approx 0.15 the cost of

the 24c ensemble.

Therefore even performing two complete runs (say for full stochastic versus PBC+APBC) on the

16c will only add 0.4 Mio Jpsi-core hours to the total budget. Even very conservatively

estimating the cost of extensive experimentation on the 16c ensemble to be 1 Mio Jpsi-core hours,

combined with the final-volume study of the best method on the 24c ensemble, will yield a total

cost of the 16c and 24c studies that is only 8% of the total requested allocation.

15 / 18



2. Your initial study at two spatial volumes with fixed
parameters will use an unphysically heavy pion of mpi ≈
422 MeV. How does the use of such a very heavy pion
mass impact the interpretation of the results of your
study? In particular, will it potentially change the
outcome of which approach (e.g. stochastic versus
PBC+APBC) appears more promising?

See, e.g., slide 2: dashed line is analytic function only of mL. For
the study of the volume-dependence we expect to obtain reliable
answers from the 16c/24c studies. For the noise study, the 32c
ensemble is essential.
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3. It will be very difficult to draw strong conclusions
about finite-volume effects with only two spatial volumes
at fixed other parameters. Why aren’t you planning on
analyzing a third ensemble with a different spatial volume
and fixed other parameters? (For example, you could
analyze a smaller-volume ensemble where the effects are
extremely easy to observe, and which would be relatively
inexpensive.)

See slide 11: We hope that mapping out functional dependence is
not necessary since we may only see a reasonably small difference
between 16c and 24c studies after using TA. If necessary, we will
consider generating a third volume such as suggsted by the SPC.
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4. The aim of this proposal is to understand
finite-volume errors in lattice QED simulations, and to
test methods for reducing these FV errors. How does
analyzing the 323 physical-mass ensemble, which is not
at the same parameters as the 163 and 243 ensembles
help you to achieve this goal?

See slide 13: For the FV-dependence study the 16c vs 24c test
may be an economical way to get a reliable answer. For the noise
study the 32c is essential. The long-term goal is to add another
partner ensemble to the 32c ensemble to study volume-dependence
at physical pion mass.
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Thank you



483 spatial volume that we will use for a designated finite-volume study at
physical pion mass in a future proposal.

As mentioned in Sec. 2.3, we intend to first select the optimal measure-
ment strategy on RBC/UKQCD’s 163 ensemble with 422 MeV pion mass for
which there is a companion ensemble with identical parameters but larger
volume (243). In this way, we will also obtain a first estimate of finite-volume
errors within means proposed in this allocation period.

We suggest that the cost of the 163 studies are negligible compared to
our proposed measurements on ensemble 17. Since we will only perform a
243 computation for the optimal strategy, we furthermore conjecture that
the associated costs will also be negligible with respect to the 323 costs.

Unfortunately, ensemble 17 does not exist yet such that we base the
timing estimates below on the RBC/UKQCD 323 DSDR ensemble with 170
MeV pion mass. We then account for the additional cost going to lighter
pion mass by a fudge factor of 1.5.

We summarize the cost in Tab. 1. We intend to run using the Clusters
at FNAL.

Lanczos for 2000 EV on ensemble 17 on 1024 BC1 cores 28.7 hours
Sloppy solve on ensemble 17 on 1024 BC1 cores 0.21 hours
Exact solve on ensemble 17 on 1024 BC1 cores 1.13 hours

Number of configurations 50
Number of sloppy solves per configuration 512
Number of exact solves per configuration 16

Number of Lanczos invocations (di↵erent twists) per configuration 8

Total computational cost in Mio Jpsi-core hours 27.3
Total storage on disk 17 TB
Total storage on tape 806 TB

Total storage cost in Mio Jpsi-core hours 2.8

Total request 30.1 Mio Jpsi-core hours

Table 1: Cost estimates for the proposed computation. We intend to use an
AMA [6] setup with parameters described in this table.

4 Shared Data and Exclusivity

We will make both the propagators as well as the eigenvectors for the re-
spective twist angles on the new ensemble 17 available to the entire collab-
oration. We believe that a future extension of this project as well as other
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Bloch’s theorem and QCD+QED simulations arXiv:1503.04395
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Bloch’s theorem: a quick reminder

Eigenfunctions of the SE can be written as

ψm,n,θ(x) = e i(2πm+θ)x/Lum,n,θ(x)

with um,n,θ(x + L) = um,n,θ(x) and m, n, θ enumerating the states.

Let’s consider a single fundamental cell with twisted boundary conditions
(and twist-angle θ). We can decompose an arbitrary wavefunction φθ(x)
as

φθ(x) =
∑

m,n

ψm,n,θ(x)cm,n .

The same wavefunction extended beyond the fundamental cell is then
given by

φ(x) =
∑

m,n

∫ 2π

0

dθψm,n,θ(x)cm,n =

∫ 2π

0

dθφθ(x) .



Prescription for any observable:

1. Before performing the fermionic Wick contractions, replace
ψ → Ψ

2. Perform Wick contractions

3. Use Eq. (1) to relate expression back to integrals over twists
involving only Dirac inversions of your finite-volume theory

Remarks:

I Allows for the coupling of photons to Ψ and therefore to
simulate finite-volume (FV) QCD + infinite-volume QED

I Discrete sum versions of Eq. (1) for larger volume instead of
infinite-volume are straightforward

I Put sources/sinks anywhere in infinite volume

I In particular with multi-source methods (such as AMA) can
get away with single twist per configuration and source



Brief history of similar ideas:

I PBC+ABC trick

I Metallic systems:

I arXiv:cond-mat/0101339): “. . . averaging over the twist
results in faster convergence to the thermodynamic limit than
periodic boundary conditions . . .”

I Loh and Campbell 1988: “. . . using a novel
phase-randomization technique, we are able to obtain
absorption spectra with high resolution”

I Nucleon mass and two-baryon systems (Briceno et al. 2013):
“Twist averaging . . . improves the volume dependence . . .”


