QCD thermodynamics

Frithjof Karsch, BNL/Bielefeld

USQCD All Hands Meeting Fermilab, May 1-2, 2015

Thermodynamics of strong-interaction matter from Lattice QCD arXiv:1504.05274 Happy I:Oth Happy J:Oth

Project Proposals:

Electric charge fluctuations in 2+1 flavor QCD PI: F. Karsch (HotQCD Collaboration)

Non-Gaussian cumulants of conserved charges up to 6th order PI: S. Mukherjee (BNL-Bielefeld-CCNU)

QCD thermodynamics and the Heavy Ion Collision Program at RHIC

Exploring the QCD phase diagram in Theory and Experiment

Phase Structure	Theory	Experiment Signatures	
QGP Phase	EOS, densities, temperature, transport properties, Novel symmetries: LQCD + QCD based models	Jet quenching, Azimuthal anisotropy, strangeness enhancement, Quarkonia suppression, etc	T T T Cuark Gluon Plasma Quark Gluon Plasma Hadron Gas Hadron Gas Nuclei Kuclei KB Bedanga Mohanty (STAR), opening talk given at "Critical Point and Onset of Deconfinement 2013", Napa PoS CPOD 2013 "~13) 001
Hadronic Phase	Hadron mass, spectral functions, freeze-out properties (temperature, volume, lifetime etc). LQCD + QCD models	Freeze-out properties (yields, ratios and spectra) source size and life time (HBT)	
Cross over	Susceptibility volume dependence. LQCD	direct signature ? (indirect through <u>EOS</u>)	
Critical point	Correlation lengths, Susceptibilities. LQCD + QCD based models	Fluctuations, Higher moments of conserved number distributions	
New phases	Quarkyonic - QCD Models (lattice ?)	Baryon correlations	
Transition line	LQCD, QCD models	Some signatures	

Exploring the QCD phase diagram

Exploring the QCD phase diagram

Exploring the QCD phase diagram with net charge fluctuations

RHIC beam energy scan: $\sqrt{s} = (7.7-200) {
m GeV}/A$ search for the critical point

generalized susceptibilities

$$egin{aligned} \chi_n^q &= rac{\partial^n p/T^4}{\partial (\mu_q/T)^n} \ q &= B, \ Q, \ S \end{aligned}$$

Net proton number fluctuations at RHIC

mean
$$\langle \delta N_q
angle \equiv \langle N_q - N_{ar q}
angle$$

variance

$$\sigma_q^2 \equiv \langle (\delta N_q)^2
angle - \langle \delta N_q
angle^2$$

skewness $S_q \equiv \langle (\delta N_q)^3 \rangle / \sigma_q^3$ kurtosis

$$\kappa_q\equiv \langle (\delta N_q)^4
angle/\sigma_q^4-3$$

STAR Collaboration, PRL 112, 032302 (2014) higher order cumulants characterize shape of conserved charge distributions

$$S_q \sigma_q = rac{\chi_3^q}{\chi_2^q} \;,\; \kappa_q \sigma_q^2 = rac{\chi_4^q}{\chi_2^q} \;... \quad rac{S_Q \sigma_Q^3}{M_Q} = rac{\chi_3^Q}{\chi_1^Q} \; - \; rac{M_Q}{\sigma_Q^2} = rac{\chi_1^Q}{\chi_2^Q}$$

Cumulants of conserved charge fluctuations

net baryon number fluctuations

STAR Collaboration, PRL 112, 032302 (2014)

net electric charge fluctuations

Cumulants of conserved charge fluctuations

Exploring the properties of the phases of QCD matter - research opportunities and priorities for the next decade

U. Heinz et al., arXiV:1501.06477

Conserved e-Charge Cumulants in (2+1)-flavor QCD A-project (INCITE): HotQCD

pressure:

$$\frac{P}{T^4} = \sum_{i,j,k=0}^{\infty} \frac{1}{i!j!k!} \chi^{BQS}_{i,j,k}(T) \left(\frac{\mu_B}{T}\right)^i \left(\frac{\mu_Q}{T}\right)^j \left(\frac{\mu_S}{T}\right)^k$$

the simplest case: $\mu_B > 0; \ \mu_S = \mu_Q = 0$

cumulants of electric charge fluctuations

$$\chi_n^Q(T,\mu_B) = \chi_n^Q(T,0) + \frac{\chi_{2n}^{BQ}(T)}{2} \left(\frac{\mu_B}{T}\right)^2 + \frac{\chi_{4n}^{BQ}(T)}{24} \left(\frac{\mu_B}{T}\right)^4 + \dots$$

leading order is most problematic

- electric charge fluctuations are dominated by pions
- taste violations are the largest source for systematic errors

large lattices are needed to control them $64^3 \times 16$

Electric charge fluctuations in (2+1)-flavor QCD

Electric charge fluctuations in (2+1)-flavor QCD

cumulants of electric charge fluctuations

$$\chi_n^Q(T,\mu_B) = \chi_n^Q(T,0) + \frac{\chi_{2n}^{BQ}(T)}{2} \left(\frac{\mu_B}{T}\right)^2 + \frac{\chi_{4n}^{BQ}(T)}{24} \left(\frac{\mu_B}{T}\right)^4 + \dots$$

leading order is most problematic

next-to-leading order (and higher) is controlled by baryons: signal-to-noise ratio is the main problem – but can be handled

Equation of state of (2+1)-flavor QCD

pressure, entropy & energy density

 up to the crossover region the QCD EoS agrees quite well with hadron resonance gas (HRG) model calculations; However, QCD results are systematically above HRG

Equation of state of (2+1)-flavor QCD: $\mu_B/T > 0$ A-project (GPUs): S. Mukherjee et al

$$\frac{P}{T^4} = \sum_{i,j,k=0}^{\infty} \frac{1}{i!j!k!} \chi^{BQS}_{i,j,k}(T) \left(\frac{\mu_B}{T}\right)^i \left(\frac{\mu_Q}{T}\right)^j \left(\frac{\mu_S}{T}\right)^k$$

the simplest case: $\mu_B > 0$; $\mu_S = \mu_Q = 0$ $\frac{P(T, \mu_B)}{T^4} = \frac{P(T, 0)}{T^4} + \frac{\chi_2^B(T)}{2} \left(\frac{\mu_B}{T}\right)^2 + \frac{\chi_4^B(T)}{24} \left(\frac{\mu_B}{T}\right)^4 \frac{\chi_6^B(T)}{720} \left(\frac{\mu_B}{T}\right)^6 + \mathcal{O}(\mu_B^8)$

An $\mathcal{O}((\mu_B/T)^4)$ expansion is exact in a QGP up to $\mathcal{O}(g^2)$ How good is an $\mathcal{O}((\mu_B/T)^4)$ expansion in a HRG?

- needed for $\mu_B/T\simeq 1.2$ - deviations less than 3% at $\mu_B/T=2$

F. Karsch, USQCD All Hands Meeting 2015

Equation of state of (2+1)-flavor QCD: $\mu_B/T>0$

Equation of state of (2+1)-flavor QCD: $\mu_B/T>0$

$$\frac{P}{T^4} = \sum_{i,j,k=0}^{\infty} \frac{1}{i!j!k!} \chi^{BQS}_{i,j,k}(T) \left(\frac{\mu_B}{T}\right)^i \left(\frac{\mu_Q}{T}\right)^j \left(\frac{\mu_S}{T}\right)^k$$

the simplest case: $\mu_B > 0$; $\mu_S = \mu_Q = 0$ $\frac{P(T, \mu_B)}{T^4} = \frac{P(T, 0)}{T^4} + \frac{\chi_2^B(T)}{2} \left(\frac{\mu_B}{T}\right)^2 + \frac{\chi_4^B(T)}{24} \left(\frac{\mu_B}{T}\right)^4 + \frac{\chi_6^B(T)}{720} \left(\frac{\mu_B}{T}\right)^6$

the general case: $\mu_B > 0, \mu_S > 0, \mu_Q > 0$

introduce constraints: (i) strangeness neutrality (ii) fixed electric charge/baryon number ratio

$$\begin{split} \frac{P(T,\mu_B)}{T^4} &= \frac{P(T,0)}{T^4} + \frac{\chi_2^{SN}(T)}{2} \left(\frac{\mu_B}{T}\right)^2 + \frac{\chi_4^{SN}T)}{24} \left(\frac{\mu_B}{T}\right)^4 + \dots \\ \chi_2^{SN} &= \chi_2^B + \chi_2^Q q_1^2 + \chi_2^S s_1^2 + 2 \left(\chi_{11}^{BQ} q_1 + \chi_{11}^{BS} s_1 + \chi_{11}^{QS} q_1 s_1\right) \\ s_1 &= -\frac{\chi_{11}^{BS}}{\chi_2^S} - \frac{\chi_{11}^{QS}}{\chi_2^S} q_1 \ , \ q_1 = \dots \end{split}$$

Calculating charge fluctuations on the lattice

cumulants, e.g.:
$$\chi_{ijk}^{uds} = \frac{\partial^i}{\partial \mu_i^u} \frac{\partial^j}{\partial \mu_j^d} \frac{\partial^k}{\partial \mu_k^s} \ln Z(T, \mu_u, \mu_d, \mu_s)$$

for instance: $\chi_{31}^{us} = -3\mathcal{A}_{11}^{us}\mathcal{A}_{20}^{us} + \mathcal{A}_{31}^{us}$
 $\mathcal{A}_{31}^{us} = \langle (D_1^u)^3 D_1^s \rangle + 3\langle D_1^u D_2^u D_1^s \rangle + D_3^u D_1^s \rangle$
 $D_n^f = \frac{1}{4} \frac{\partial^n \ln \det M(\mu_f)}{\partial \mu_f^n}$
 $= \frac{1}{4} \operatorname{Tr}(M_f^{-1} \partial_\mu M)(M_f^{-1} \partial_\mu M)....(M_f^{-1} \partial_\mu M)$

evaluate traces using stochastic estimators

EoS at $\mu_B/T > 0$: Current status

$$\frac{\Delta(T,\mu_B)}{T^4} = \frac{P(T,\mu_B) - P(T,0)}{T^4} = \frac{\chi_2^B}{2} \left(\frac{\mu_B}{T}\right)^2 \left(1 + \frac{1}{12} \frac{\chi_4^B}{\chi_2^B} \left(\frac{\mu_B}{T}\right)^2\right)$$
estimating the $\mathcal{O}((\mu_B/T)^6)$ correction: $\sim \frac{1}{720} \frac{\chi_6^B}{\chi_2^B} \left(\frac{\mu_B}{T}\right)^6$

$$\int_{-2}^{6} \frac{\chi_6^B/\chi_2^B}{\chi_2^B} \left(\frac{\chi_6}{\chi_2^B}\right) \left(\frac{\chi_6}{\chi_2$$

The EoS is well controlled for $\,\mu_B/T \leq 2$

Calculating charge fluctuations on the lattice

recent advances:

 understood that higher order cumulants are free of divergences and can be calculated using the so-called linear-mu formulation:
 R.V. Gavai and S. Sharma, Phys. Rev. D85 (2012) 054508
 now post-doc at BNL

 developed efficient deflation code for the evaluation of charge fluctuation observables on GPUs

Calculating charge fluctuations on the lattice

- highly efficient CG inverter for HISQ action on GPUs (and also on MIC)

 gain by using multiple right hand sides – balance against #EV used
 Titan specific: shift eigenvector calculation for deflation to CPU; generation of eigenvectors "comes for free" and GPU can run with more right hand sides