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Strongly-coupled composite dark matter

• Our focus: composite DM as a strongly-bound state of some 
more fundamental objects (think of the neutron) 

• Non-Abelian SU(ND) gauge sector, with some fermions in the 
fundamental rep.  Not the only possibility (e.g. “dark atoms”, 
other non-Abelian theories) but a well-motivated, somewhat 
familiar foundation. 

• Constituents can carry SM charges, and charged excited 
states active in early universe.  Composite DM relic interacts via 
SM particles (photon, Higgs) but with form factor suppression!



Symmetries of stealth DM

• Start with SU(ND) gauge theory and NF Dirac fermions, in the 
fundamental rep, and impose some conditions. 

• First requirement: baryons are bosons - even ND.  No 
magnetic moment.  ND≥4 gives automatic DM stability from 
Planck-scale violations. 

• Second requirement: couplings to electroweak and Higgs - 
one EW doublet and one singlet, NF≥3.  Ensures meson decay 
as well. 

• Third requirement: custodial SU(2) for electroweak precision - 
NF=4.  As a bonus, charge radius is eliminated —> stealth DM!



Stealth dark matter: model details

• SU(4) gauge group with 
4 Dirac fermions (SU(2)L 
and SU(2)R doublets) 

• Two sources of mass 
allowed: vector-like and 
Higgs-Yukawa 

• Custodial symmetry is 
identified as u <—> d 
exchange symmetry
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TABLE I. Dark fermion particle content of the stealth dark
matter model. All fields are two-component (Weyl) spinors.
SU(2)L refers to the Standard Model electroweak gauge
group, and Y is the hypercharge. In the broken phase of
the electroweak theory, the dark fermions have the electric
charge Q = T3 + Y as shown.

tified with dark baryon number. The total fermionic con-
tent of the model is therefore 8 Weyl fermions that pair
up to become 4 Dirac fermions in the fundamental or
anti-fundamental representation of SU(ND) with electric
charges of Q ⌘ T

3,L + Y = ±1/2. We use the notation
where the superscript u or d (as in Fu, F d and later  u,
 d,  u,  d) denotes a fermion with electric charge of
Q = 1/2 or Q = �1/2 respectively.
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with the interactions among the electroweak group and
the new SU(ND). Here Y u = 1/2, Y d = �1/2 and tb

are the representation matrices for the fundamental of
SU(ND).
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SU(2)⇥U(1), where the global SU(2) acts as a custodial
symmetry.) Thus, after weakly gauging the electroweak
symmetry and writing arbitrary vector-like mass terms,
the unbroken flavor symmetry is U(1) ⇥ U(1).

Electroweak symmetry breaking mass terms arise from
coupling to the Higgs field H that we take to be in the
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where again the relative minus signs are chosen for later
convenience. After electroweak symmetry breaking, H =
(0 v/

p
2)T , with v ' 246 GeV. Replacing the Higgs

field by its VEV in Eq. (7), we obtain mass terms for the
fermions, in 2-component notation,
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with the mass matrices given by

Mu ⌘
 

M
12

yu
14

v/
p

2

yu
23

v/
p

2 Mu
34

!
(9)

Md ⌘ �
 

M
12

yd
14

v/
p

2

yd
23

v/
p

2 Md
34

!
. (10)

These Yukawa couplings break the remaining U(1) ⇥
U(1) flavor symmetry to U(1)D dark baryon number.
The mass matrices Mu and Md correspond to the masses
of two sets of fermions with electric charge Q = +1/2
and Q = �1/2 respectively, in the fundamental repre-
sentation of SU(ND). The two biunitary mass matrices
can be diagonalized by four independent rotation angles
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EW-preserving mass:

EW-breaking mass:



Mass eigenstates

• Two sources of mass, electroweak breaking and preserving. 
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where the extra phase in Eqs. (16),(17) ensures the Q =
�1/2 fermions will have positive mass eigenvalues.

The Lagrangian for the fermion mass eigenstates be-
comes
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mass eigenstates are constructed from the 2-component
Weyl spinor mass eigenstates in the usual way,
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straightforward diagonalization of the mass matrices,
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with identical expressions for Md
1,2 and tan 2✓d

1,2 with the
replacement u $ d everywhere.

It is important to note that the electroweak currents
(jµ

+

, jµ
�, jµ

3

, jµ
Y ) play an important role in the upcom-

ing phenomenological discussions. Due to the extended
expressions for these quantities in terms of our Dirac
spinors, we have relegated a detailed derivation of the
electroweak currents to Appendix A.

IV. SIMPLIFICATIONS

Our main interest is the more specialized case where
the lightest Q = +1/2 and Q = �1/2 fermions are degen-
erate in mass to a very good approximation. This leads
to a neutral scalar baryon with a vanishing charge radius.
While there are several ways this could be accomplished,
we can simply impose a custodial SU(2) global symme-
try on the Lagrangian. In order to simplify notation, we
define cj
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A. Custodial SU(2)

An exact custodial SU(2) symmetry implies the masses
and interactions are symmetric with respect to the inter-
change u $ d. This means the Lagrangian parameters
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No u or d labels are necessary, since custodial SU(2)
symmetry implies that there is one pair of Dirac fermions
with electric charge Q = (+1/2, �1/2) with mass M
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(the
lightest pair), as well as a second pair of Dirac fermions
with electric charge Q = (+1/2, �1/2) with mass M
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(the heavier pair). The spectrum is illustrated in Fig. 1.
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purely vector-like masses, and thus the chiral conden-
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B. Approximately symmetric mass matrices

A second simplification, useful to analytically and nu-
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The distinct regimes are thus yv � � and yv ⌧ �.

In the Linear Case, electroweak symmetry breaking is

4 We assume � < M , such that fermion masses remain positive,
to avoid further fermion field rephasings.

5

where the extra phase in Eqs. (16),(17) ensures the Q =
�1/2 fermions will have positive mass eigenvalues.

The Lagrangian for the fermion mass eigenstates be-
comes

L � �
2X

i=1

�
Mu

i  
u
i  

d
i + Md

i �
d
i�

u
i + h.c.

�
(18)

where the mass eigenvalues are Mu
1,2 for Q = 1/2, and the

distinction between fermions  and � allows us to write
the Q = �1/2 fermion masses as Md

1,2. The Dirac spinor
mass eigenstates are constructed from the 2-component
Weyl spinor mass eigenstates in the usual way,

 u
i ⌘

 
 u

i

 d
i
†

!
i = 1, 2 (19)

 d
i ⌘

 
�d

i

�u
i
†

!
i = 1, 2 (20)

giving the Dirac fermion masses

L � �
2X

i=1

⇣
Mu

i  
u
i  

u
i + Md

i  
d
i 

d
i

⌘
. (21)

The fermion masses themselves are obtained from a
straightforward diagonalization of the mass matrices,

Mu
1,2 =

M
12

+ Mu
34

2
⌥
"✓

M
12

� Mu
34

2

◆
2

+
yu
14

yu
23

v2

2

#
1/2

,

(22)
with mixing angles

tan 2✓u
1

=
2
p

2v(M
12

yu
23

+ Mu
34

yu
14

)

2M2

12

� 2(Mu
34

)2 + (yu
14

v)2 � (yu
23

v)2
(23)

tan 2✓u
2

=
2
p

2v(M
12

yu
14

+ Mu
34

yu
23

)

2M2

12

� 2(Mu
34

)2 � (yu
14

v)2 + (yu
23

v)2
, (24)

with identical expressions for Md
1,2 and tan 2✓d

1,2 with the
replacement u $ d everywhere.

It is important to note that the electroweak currents
(jµ

+

, jµ
�, jµ

3

, jµ
Y ) play an important role in the upcom-

ing phenomenological discussions. Due to the extended
expressions for these quantities in terms of our Dirac
spinors, we have relegated a detailed derivation of the
electroweak currents to Appendix A.

IV. SIMPLIFICATIONS

Our main interest is the more specialized case where
the lightest Q = +1/2 and Q = �1/2 fermions are degen-
erate in mass to a very good approximation. This leads
to a neutral scalar baryon with a vanishing charge radius.
While there are several ways this could be accomplished,
we can simply impose a custodial SU(2) global symme-
try on the Lagrangian. In order to simplify notation, we
define cj

i ⌘ cos ✓j
i , sj

i ⌘ sin ✓j
i and PL,R = (1 ⌥ �

5

)/2.
In the custodial SU(2) symmetric theory, cu

i = cd
i and

su
i = sd

i .

A. Custodial SU(2)

An exact custodial SU(2) symmetry implies the masses
and interactions are symmetric with respect to the inter-
change u $ d. This means the Lagrangian parameters
satisfy

yu
14

= yd
14

⌘ y
14

, yu
23

= yd
23

⌘ y
23

, (25)

Mu
34

= Md
34

⌘ M
34

.

Defining the overall vector-like mass scale M and di↵er-
ence � to be 4

M ⌘ M
12

+ M
34

2
� ⌘

����
M

12

� M
34

2

���� , (26)

the dark fermion mass eigenvalues are

M
1,2 = M ⌥

r
�2 +

y
14

y
23

v2

2
. (27)

No u or d labels are necessary, since custodial SU(2)
symmetry implies that there is one pair of Dirac fermions
with electric charge Q = (+1/2, �1/2) with mass M

1

(the
lightest pair), as well as a second pair of Dirac fermions
with electric charge Q = (+1/2, �1/2) with mass M

2

(the heavier pair). The spectrum is illustrated in Fig. 1.
In the limit y

14

, y
23

! 0, the fermions acquire
purely vector-like masses, and thus the chiral conden-
sate of the dark force is aligned to a purely electroweak-
preserving direction. In order that the chiral conden-
sate’s electroweak-preserving orientation is not signifi-
cantly disrupted, we consider small electroweak breaking
masses, y

14

v, y
23

v ⌧ M .
This leaves two distinct regimes for the spectrum, de-

pending on the relative sizes of
p

y
14

y
23

v and �.

B. Approximately symmetric mass matrices

A second simplification, useful to analytically and nu-
merically evaluate our results, is to take y

14

' y
23

. The
mass matrices Eqs. (9,10) are approximately symmetric.
Specifically, we can write

y
14

= y + ✏y , y
23

= y � ✏y , |✏y| ⌧ |y| . (28)

and expand in powers of ✏y. For example, the dark
fermion masses become simply

M
1,2 = M ⌥

r
�2 +

y2v2

2
. (29)

to leading order in O(✏y).
The distinct regimes are thus yv � � and yv ⌧ �.

In the Linear Case, electroweak symmetry breaking is

4 We assume � < M , such that fermion masses remain positive,
to avoid further fermion field rephasings.

5

• Assume yv<<M, to avoid vacuum alignment issues w/EWSB.  Then 
two regimes arise, depending on the origin of the mass splitting:

Linear Case:

Quadratic Case: yv ⌧ �

yv � �

y =
yp
2

y =
y2v

2�
(linear/quadratic effect observed before, see Hill and Solon 1401.3339)



Stealth dark matter on the lattice

• The model: SU(4) 
gauge theory at 
moderately heavy 
fermion mass 

• On the lattice: 
plaquette gauge 
action, Wilson 
fermions (quenched) 

• Spectrum shown to 
the right

6

 amPS amV aMS0 aMS1 aMS2

0.1475 0.280(1) 0.310(3) 0.660(6) 0.672(5) 0.692(6)
0.1480 0.247(2) 0.288(3) 0.607(7) 0.623(7) 0.648(7)
0.1486 0.204(2) 0.248(6) 0.538(7) 0.543(8) 0.569(11)
0.1491 0.159(4) 0.223(5) 0.481(10) 0.498(10) 0.528(11)
0.1495 0.114(5) 0.195(9) 0.421(15) 0.443(12) 0.495(12)
0.1496 0.109(5) 0.192(9) 0.413(18) 0.434(12) 0.495(12)

TABLE IV. Spectrum results for � = 12.0 on 323 ⇥ 64 lattices.
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FIG. 5. Lattice spectrum results for the coarse lattice spacing
(� = 11.5) on 323⇥64 lattices for three input quark masses. (top)
Masses in lattice units of the pseudoscalar meson (red), vector
meson (orange), spin-0 baryon (brown), spin-1 baryon (blue), and
spin-2 baryon (black) vs. the meson mass ratio (pseudoscalar
over vector). (bottom) Masses in units of the spin-0 baryon mass
for the spin-0 baryon mass (brown), spin-1 baryon mass (blue),
and spin-2 baryon mass (black) vs. the meson mass ratio. Vertical
error bars of spin-0 baryon mass represent the error on the scale
setting for the dark matter mass.

senting the results as a function the meson mass ratio gives
an optimal sense on the relative magnitude of the fermion
mass. In the heavy quark limit, this ratio approaches 1 and
in the chiral limit, this ratio approaches 0 (for reference,
this value is QCD is mPS/mV ⇡ 0.18). On the second
plot in Fig. 4, the baryon masses are given in units of the
MS0 mass, which sets the scale of our dark matter mass in
exclusion plots. The ratio MS0/MS0 is trivially 1, but the
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FIG. 6. Lattice spectrum results for the fine lattice spacing (� =
12.0) on 323⇥64 lattices for six input quark masses. (top) Masses
in lattice units of the pseudoscalar meson (red), vector meson
(orange), spin-0 baryon (brown), spin-1 baryon (blue), and spin-
2 baryon (black) vs. the meson mass ratio (pseudoscalar over
vector). (bottom) Masses in units of the spin-0 baryon mass for
the spin-0 baryon mass (brown), spin-1 baryon mass (blue), and
spin-2 baryon mass (black) vs. the meson mass ratio. Vertical
error bars of spin-0 baryon mass represent the error on the scale
setting for the dark matter mass.

associated errors here correspond to the error on the scale
setting. For these coarse lattice spacing results, the scale
setting error will no more than 1.7%. It is clear (from this
plot in particular) that the relative separation is growing as
the pseudoscalar meson mass is decreased. This is to be
expected, as all three baryon states should have equal mass
in the heavy fermion mass limit (four times the fermion
mass), and are thus expected to separate as mass is de-
creased. What is not as predictable a priori is the relative
separation of the states. In particular, the spin-1 baryon
mass hugs much closer to the spin-0 mass than the spin-
2 state does either of the other states (i.e. the spin-2 state
separation grows faster with decreasing quark mass). The
implications of this and large Nc baryons will be discussed
more in the comparison of three and four colors. While vol-
ume effects on these lattices are under control, finite lattice
spacing effects will need to be quantified.

The results for the intermediate lattice spacing (� =

Π

V

spin-0
spin-1
spin-2

nucleons
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Higgs exchange cross 
section in Stealth DM

• Need to non-perturbatively 
evaluate the σ-term of the dark 
baryon (scalar nuclear form 
factor) 

• Effective Higgs coupling non-
trivial with mixed chiral and 
vector-like masses 

• Model-dependent answer for the 
cross-section in this channels 

• A non-negligible vector mass is 
needed to evade direct 
detection bounds

mf (h) = m+
yhp
2

↵ ⌘ v

mf

@mf (h)

@ h

����
h=v

=
yvp

2m+ yv
 1

[LSD collab., Phys. Rev. D89 (2014) 094508]



Stealth dark matter: lattice results so far

• Spectrum and scalar 
current calculation: mass 
generation from Higgs 
strongly constrained.
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• EM polarizability: lower 
bound on direct detection 
for theories with charged 
constituents.  Stealth DM 
visible below a TeV or so.
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• DM is far from lightest particle in the new sector!  Much harder to 
produce directly in colliders, so MET signals are greatly 
suppressed. 

• On the other hand, presence of the much lighter and charged Π 
states gives strong bounds from complementary searches.

La . 'Es¥dsFniF .at#tiFiomDm4 ;

z
4 . . -

i¥#±i÷#i
E

^

lightest baryon
"
p

"

Li
SY composite

Comparison between typical SUSY DM and composite DM:



Meson decay

• Important consequence of electroweak coupling: allow 
mesons to decay, especially the charged ones!

• Mass flip in final state, due to decay of pseudoscalar bound state 
(same for QCD pions.) Gives preferred decay to heaviest SM states:

YETwo:
0¥⇒¥ne¥I

are many possible decay modes. For a general decay into
a Standard Model doublet (f f 0), assuming mf � mf 0 ,
the decay width is

�(⇧+ ! ff
0
) =

G2

F

4⇡
f2

⇧

m2

fm
⇧

c2

axial

 
1 � m2

f

m2

⇧

!
.(35)

If m
⇧

> mt + mb, the dominant decay mode is expected
to be ⇧+ ! tb, otherwise ⇧+ ! ⌧+⌫⌧ and ⇧+ ! s̄c,
with branching ratios of roughly 70% and 30% respec-
tively. Note that the decay width has several enhance-
ment factors relative to the QCD pion decay width

�(⇧+ ! ff
0
)

�(⇡ ! µ+⌫µ)
' c2

axial

|Vud|2
✓

f
⇧

f⇡

◆
2

✓
mf

mµ

◆
2

✓
m

⇧

m⇡

◆
(36)

where for simplicity we have neglected kinematic suppres-
sion. As an example, if f

⇧

' m
⇧

' v, we find the lightest
charged dark mesons decay faster than QCD charged pi-
ons so long as c

axial

>⇠ 10�8. This is easy to satisfy with
small Yukawa couplings and dark fermion masses at or
beyond the electroweak scale.

We can now make some comments about existing col-
lider constraints on non-singlet mesons. The lightest
charged mesons ⇧± can be pair produced in particle
colliders through the Drell-Yan process, and will decay
through annihilation of the constituent fermions into a
W boson. Because the Drell-Yan production is mediated
by a photon and the mesons have unit electric charge, the
production cross-section is substantial, leading to robust
bounds from LEP-II. For charged states near the LEP-II
energy threshold, the dominant decay mode is expected
to be ⇧+ ! ⌧+⌫⌧ as noted above. Reinterpreting the
LEP-II bound from the pair production of supersymmet-
ric partners to the tau (with the stau decaying into a tau
and a nearly massless gravitino), we find m

⇧

>⇠ 86.6 GeV
[59–63]. Stronger bounds from the LHC may be possible,
although existing searches do not yet give any significant
constraints on the charged mesons [20]; we briefly high-
light the signals in the discussion.

Using our lattice results from Ref. [30], we can trans-
late the experimental bound on the mass of the pseu-
doscalar meson into a bound on the baryon mass,
mB > 245, 265, 320 GeV when the ratio of the pseu-
doscalar mass to the vector meson mass is m

⇧

/mV =
0.77, 0.70, 0.55.

VI. CONTRIBUTIONS TO ELECTROWEAK
PRECISION OBSERVABLES

Stealth dark matter contains dark fermions that ac-
quire electroweak symmetry breaking contributions to
their masses. Consequently, there are contributions to
the electroweak precision observables of the Standard
Model, generally characterized by S and T [64, 65]. In
the custodial SU(2) limit, Eq. (25), the contribution to
T vanishes. There is a contribution to S, controllable

through the relative size of the electroweak breaking and
electroweak preserving masses of the dark fermions.

The S parameter is defined in terms of momentum
derivatives of current-current correlators [64, 65],

S ⌘ 16⇡⇧0
3Y (0) (37)

=
d

dq2


16⇡

3

✓
gµ⌫ � qµq⌫

q2

◆
Xµ⌫(q2)

�

q2
=0

Xµ⌫(q2) ⌘
Z

d4x e�iq·xhjµ
3

(x)j⌫
Y (0)i, (38)

where the currents jµ
3

(x) and j⌫
Y (x) for the stealth dark

matter model are defined in Eqs. (A7) and (A8). Af-
ter some algebra and identifications of symmetric con-
tractions, these definitions of the currents in terms of
4-component fermion fields lead to the current-current
correlator. In the custodial limit, we obtain

2hjµ
3

(x)j⌫
Y (0)i = c2
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11Gµ⌫
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+ c2

1

s2
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2

s2
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�
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1
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2

s
1

s
2

�
12Gµ⌫

LR + 12Gµ⌫
RL + 21Gµ⌫

LR + 21Gµ⌫
RL

�
, (39)

where the connected contributions to the correlation
functions are given by

ijGµ⌫
AB ⌘ h ̄u

i �
µPA 

u
j  ̄

u
j �

⌫PB 
u
i i��

connected

. (40)

Here, A, B = L, R and the flavor indices i, j = 1, 2, where
it is understood that the flavors labeled 2 have larger
fermion masses than the flavors labeled 1. Since the u, d
flavors have the same mass, the u and d labels are inter-
changeable (i.e. everything is written in terms of the u
flavors).

We can obtain expressions for the mixing angle coe�-
cients. Like the case of light meson decay, if we consider
an approximately symmetric mass matrix, with Yukawa
couplings given by Eq. (28), all of the mixing angle coef-
ficients are approximately equal to each other, di↵ering
only at first order in ✏y, i.e.,
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1
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1
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2
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2
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1
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1
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s
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2

=
1

4

y2v2

y2v2 + 2�2

[1 + O(✏y) . . .]

' 1

4
⇥
(

1 Linear Case

y2v2/(2�2) Quadratic Case.
(41)

In the Linear Case, the mixing angles are approximately
equal c

1

' s
1

' c
2

' s
2

' 1/
p

2. In the Quadratic
Case, all of the contributions to the S parameter are
suppressed by (yv/�)2. To calculate the S parameter in
general requires lattice methods, paying close attention
to the heavy-light splitting of the fermions, M

2

�M
1

. To
a first approximation we expect that in the limit of small
mass splitting, M

2

� M
1

⌧ M ,

Gµ⌫
AB ⌘11 Gµ⌫

AB '22 Gµ⌫
AB '12 Gµ⌫

AB '21 Gµ⌫
AB . (42)
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Meson production

• First signature expected: 
Drell-Yan photon 
production of charged Π  

• To calculate rate, pion 
form factor needed at 
threshold: FV(Q2=4mΠ

2) 

• Hard to access at this 
momentum on lattice.  In 
QCD, “vector meson 
dominance” does pretty 
well…
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0

50

100

150

δ(
 o

 )

Data (Protopopescu et al.)
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Fig. 1. The scattering phase in the vector channel (left) for the Breit–Wigner model (dashed line) and the Inverse Amplitude
Method (solid line). We also plot the square form factor modulus (right). To be able to plot the spacelike and timelike data

together, the first is plotted against the unphysical variable −
√

−q2 with q2 the (negative) spacelike momentum transfer. Here
we use ⟨r2⟩ as input as described in the text.

variation of the cut–off, although the integral is basically converged for a cut–off of 2 GeV). It agrees to
that from vector meson dominance which is about 3.5 GeV−4 [2] and it is consistent with the constraint
[2.3 GeV−4, 5.4 GeV−4] from analyzing the form factor data using analyticity [19]. The advantage of our
analysis is that it allows in addition for a controlled estimate of the uncertainty. Equivalently, the result in
term of quartic radius is

⟨r4⟩ = 0.68 ± 0.06 fm4 . (13)

As mentioned above we will investigate the quark mass dependence of the pion form factor based on the
assumption that gρππ is independent of the quark mass with the mπ dependence of mρ taken from other
sources. Since both parameters are explicit in the parametrization given above, we may study the resulting
quark mass dependence of cπ

V , once that of ⟨r2⟩ is fixed.

3. Chiral perturbation theory

3.1. General considerations

In order to determine the quark mass dependence of the square radius, which is the input needed for the
formalism described above, we will use the results of χPT. Clearly, the curvature cπ

V as well as its quark
mass dependence, could also be determined in χPT directly. Depending on the fit and systematics chosen in
Ref. [16], which is two–flavor O(p6) χPT calculation, its value could vary between 2−6 GeV−4, although the
authors quote a value around 4 GeV−4, in agreement with a previous estimate [2] (By fitting to form factor
data, they obtain 3.85 GeV−4). A O(p6) fit in three–flavor χPT leads to a range 4.49 ± 0.28 GeV−4 [13].
Adopting cπ

V = 4 ± 2 GeV−4 as the NNLO χPT result, we obtain ⟨r4⟩/⟨r2⟩2 = 4 ± 2. This value is copied
into Table 1.

3.2. Matching the Omnès representation

We start by giving the chiral expansion of the vector form factor [26] valid to NLO in χPT,

F (t) = 1 +
1

6f2
π

(t − 4m2
π)J̄(t) +

t

96π2f2
π

(l̄6 −
1

3
) . (14)
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m⇢ = 770 MeV

m⇢ = 255 MeV

s = 4m2
⇡

How the picture changes for mρ below threshold:

• Here, “rho” resonance is below 2π threshold - but it’s also much closer to the 
threshold.  Vector-meson dominance should be reliable, but further study is needed 

• The “dark rho” is very narrow, since decay to ππ is closed.  Another (TeV-scale) 
state to look for in colliders!

π-π scattering amplitude with mπ=140 MeV, for QCD (mπ/mρ~0.18) 
and for a stealth-DM-like theory (mπ/mρ~0.55)

(*note: this is not 
FV(Q2), it’s a Breit-
Wigner model of 

I=1 π-π scattering.)



Our plan
• Determine “stealth ρ” decay 

constant and calculate decay width 

• Measure “stealth π” FV(Q2) at 
space-like momenta from three-
point function (pion charge radius) 

• Combine with vector-meson 
dominance model to predict 
FV(4mΠ

2) for collider production

¥a-ao•€E÷Ent
.

.

(arXiv:0812.3270)

FV (Q
2
) = exp

 
hr2⇧iQ2

6

+

Q4

⇡

Z 1

4m2
⇧

ds
�11(s)

s2(s�Q2 � i✏)

!
ρ width, mass pion charge radius



Electroweak precision
• No T parameter by construction (custodial symm), but S 

parameter is an important constraint!  Two asymptotic forms of 
S contribution:

10. Electroweak model and constraints on new physics 41

only, are in excellent agreement with the SM values of zero. Fixing U = 0 (as is also done
in Fig. 10.6) moves S and T slightly upwards,

S = 0.00 ± 0.08,

T = 0.05 ± 0.07. (10.71)

Again, good agreement with the SM is observed. If only any one of the three parameters
is allowed, then this parameter would deviate at the 1.5 to 1.7 σ level, reflecting the
deviation in MW . Using Eq. (10.66), the value of ρ0 corresponding to T in Eq. (10.70) is
1.0000 ± 0.0009, while the one corresponding to Eq. (10.71) is 1.0004 ± 0.0005.

There is a strong correlation (90%) between the S and T parameters. The U parameter
is −59% (−81%) anti-correlated with S (T ). The allowed regions in S–T are shown in
Fig. 10.6. From Eqs. (10.70) one obtains S ≤ 0.14 and T ≤ 0.20 at 95% CL, where the
former puts the constraint MKK ! 3.5 TeV on the masses of KK gauge bosons in warped
extra dimensions.
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all (90% CL)
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Figure 10.6: 1 σ constraints (39.35%) on S and T (for U = 0) from various inputs
combined with MZ . S and T represent the contributions of new physics only. Data
sets not involving MW or ΓW are insensitive to U . With the exception of the fit to
all data, we fix αs = 0.1185. The black dot indicates the Standard Model values
S = T = 0.

The S parameter can also be used to constrain the number of fermion families, under
the assumption that there are no new contributions to T or U and therefore that any
new families are degenerate; then an extra generation of SM fermions is excluded at
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2.2 Electroweak precision constraints

The electroweak precision observables S and T [14] provide a significant
constraint on any model of BSM physics which couples to the electroweak
sector. Our stealth dark matter model incorporates a custodial SU(2) sym-
metry, under which the T -parameter vanishes. However, S can still provide
an important constraint. In general, S is defined as

S ⌘ 16⇡⇧0
3Y (0), (1)

where⇧
3Y (q2) is the transverse-projected correlator between the electroweak

T

3

and hypercharge currents. In stealth dark matter the electroweak charge
assignments are vector-like, so that the current correlator depends in general
on both left- and right-handed currents, as well as on mass mixing angles.
The full expression is given in [10].

There are two interesting limits to consider in which the contribution to
S is simplified. One is the limit where the splitting between the two fermion
doublets is large, M

2

� M

1

� M , where M is the average of M

1

and M

2

.
Neglecting the heavier fermion doublet, we find the expression

⇧
3Y (q2) =

1
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2

v

2

y

2

v

2 + 2�2

⇧V V (q2), (2)

where y is the Yukawa coupling to  
1

, v is the usual Higgs VEV, and � is
an input mass splitting parameter. On the other hand, in the limit of small
M

2

� M

1

we have

⇧
3Y (q2) ⇡

✏
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yv
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4M
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⇧LR(q2) =
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2

yv
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16M
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⇧V V (q2) �⇧AA(q2)

�
. (3)

In both limits, knowledge of the strongly-coupled current correlators allows
us to translate directly into limits on the Yukawa couplings to the stealth
sector, once the other mass scales are specified.

2.3 Collider production of dark mesons

Although we are not working at light enough masses for the “dark pions”
to behave as PNGBs, as two-fermion bound states they remain relatively
light compared to the four-fermion baryons. Collider searches for the ⇧±,0

states can thus give a direct bound on stealth dark matter at even heavier
masses than those available to the collider; as shown in Fig. 1, LEP gives
a lower bound for the given parameters of around 300 GeV for the dark
matter mass.
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to behave as PNGBs, as two-fermion bound states they remain relatively
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M2 � M1

M1 ⇡ M2

• Calculation of strong-
coupling part yields 
direct bounds on Yukawa 
couplings (important for 
asymmetric relic density)



Lattice calculation details

• Form factor: calculate <π(t)Vμ(t’)π(0)> and <π(t)π(0)>.  
Construct appropriate ratio to extract vector-current matrix 
element.   

• Three vector-current insertion locations, four sources per 
config —> 12 Wilson propagators; 500 (pure-gauge) 
configurations.  

• S-parameter: calculate conserved-local correlators 
<VC(x)VL(0)> and <AC(x)AL(0)>.  Two source positions, Ls=8. 

• By-products of DWF calculation: Fπ, mass renormalization 
(mf/MB).



Resource request

• Three mass points for domain-wall S parameter calculation; we 
expect mild mass dependence, based on experience 

• One point at β=11.5, to test discretization effects (spectroscopy 
here shows no significant deviations) 

• We are working on a new fully threaded/vectorized code base, 
meant to replace QDP/C; Wilson solver in progress.  Up to 2x 
speed-up in calculations expected, but no benchmarks available 
yet, and we don’t include this factor above

� vol  mPSL Cost (DWF) Cost (Wilson) Total cost

11.028 323 ⇥ 64 0.1554 11.1 0.61 0.46 1.07
0.15625 9.2 0.90 0.68 1.58
0.1568 7.7 1.28 0.97 2.25
0.1572 6.6 1.80 1.36 3.16
0.1575 5.9 2.55 1.93 4.48

Total 7.14 5.40 12.54

Table 1: Estimated resources required for the S-parameter calculation
(DWF propagators) and the dark pion form factor calculation (Wilson prop-
agators). All costs are given in units of J/Psi core-hours times 106.

� vol  mPSL mPS/mV Cost (DWF) Cost (Wilson) Total cost

11.028 323 ⇥ 64 0.1554 11.1 0.76 0.61 0.46 1.07
0.15625 9.2 0.69 — 0.68 1.58
0.1568 7.7 0.62 1.28 0.97 2.25
0.1572 6.6 0.55 — 1.36 3.16
0.1575 5.9 0.49 2.55 1.93 4.48

11.5 323 ⇥ 64 0.1523 6.1 0.69 0.90 0.68 1.58
Total 5.34 6.08 11.42

Table 2: Estimated resources required for the S-parameter calculation
(DWF propagators) and the dark pion form factor calculation (Wilson prop-
agators). All costs are given in units of J/Psi core-hours times 106.

an initial study in this theory. For the form factors, we plan for a more
complete set of five mass points. 500 gauge configurations, separated by
500 heatbath trajectories each, will be used in this study. Resulting cost
estimates are shown in Table 2.
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Stability of composite dark matter candidates

• Lightest mesons (Π) can be stabilized by flavor 
symmetries* or G-parity**, but then one has to argue 
against the presence of dimension-5 operators like

*M. Buckley and EN, arXiv:1209.6054 
**Y. Bai and R. Hill, arXiv:1005.0008

1

⇤
 ̄ H†H instability over lifetime of the universe.

⇧ ⇠  ̄ B ⇠   ... ND constituents

• Accidental dark baryon number symmetry provides 
automatic stability for B on very long timescales (as long 
as ND > 2!)  E.g. for ND=4, decay through dimension-8(!)

1

⇤4
    H†H

(nice discussion here: arXiv:1503.08749)



Abundance
Symmetric Asymmetric

B

B⇤

⇧

⇧

...
(more ⇧s)

nD ⇠ nB

✓
yv

mB

◆2

exp


� mB

Tsph

�

e.g., through EW sphalerons

IF EW breaking comparable to 
EW preserving masses, expect
roughly

mB . mtechni�B ⇠ 1 TeV

How much less depends on 
several factors...

If 2 -> 2 dominates thermal 
annihilate rate and saturates
unitarity, expect

mB ⇠ 100 TeV

Unfortunately, this is hard 
calculation to do using lattice...

Griest, Kamionkowski; 1990

Chivukula, Farhi, Barr; 1990

(slide from G. Kribs)



Polarizability on the lattice

• Measure response to applied 
background field E (quadratic 
Stark shift)
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sists of an unbroken SU(4) gauge theory, which contains
bosonic baryonic bound states made up of four constituent
fermions. The DM candidate itself is a scalar made up of
two pairs of fermions which are degenerate in mass and
carry equal but opposite electric charges of ±1/2. Hence,
there is no magnetic moment or charge radius, leaving just
the electromagnetic polarizability as the dominant interac-
tion with photons.

Previous estimates of the polarizability of a composite
scalar have led to direct-detection cross sections on the or-
der of 10

�48 cm2 [20], approaching the interaction strength
at which background neutrinos are expected to contaminate
the DM recoil signal. However, the estimates were based
on semi-classical calculations of a strongly-coupled inter-
action, and so have uncontrolled uncertainties.

Additionally, due to how internal electric charges are
correlated, the polarizability of bosonic 4-fermion baryons
may differ appreciably from QCD-based estimates. In one
limit where the internal constituents are uncorrelated, the
polarizabilities are expected to be comparable. However,
if alternate flavors tend to form pairs based on their Pauli
statistics, the 4-fermion baryon polarizability would be
derivative-suppressed compared to the 3-fermion baryon
(i.e. two dipoles vs. one dipole and one charge). In order
to quantify this effect, we perform lattice calculations for
both the SU(3) and SU(4) baryon polarizabilities.

Polarizability and Direct Detection – The polarizabil-
ity operator can be written as an effective operator of the
form

OF = CF B

⇤
B F

µ⌫
Fµ⌫ , (1)

where B is the scalar baryonic composite DM field with
mass mB , Fµ⌫ is the electromagnetic field strength ten-
sor, and CF is the polarizability with mass dimension �3

in the nonrelativistic limit. This is a two-photon vertex,
so that the scattering off of nuclei will involve a virtual
photon loop. Because this operator is induced at a high
scale (roughly the dark confinement scale ⇤D ⇠ mB), it is
expected to generate other interactions with SM particles
when the appropriate effective field theory matching and
running down to the nuclear scale are carried out [24–27];
in fact, an explicit treatment for the polarizability operator
is given in [28]. Although the effects of the additional in-
duced operators are not negligible in general, we find that
they are small compared to the uncertainties (particularly
from nuclear physics) and so we will omit them.

From the interaction shown above, the coherent DM-
nucleus scattering cross section (per nucleon) is given by

�

nucleon

(Z, A) =

µ

2

nB

⇡A

2

D��
CF f

A
F

��2
E

, (2)

where mn is the nucleon mass, µnB = mnmB/(mn +

mB) is the reduced mass, (Z , A) are the atomic and mass
numbers of the target nucleus, and the angular brackets rep-
resent the momentum-averaged form factors for heavy DM
candidates in a given experiment [28].

The primary source of systematic uncertainty is on
the nuclear physics side of the calculation – evaluat-
ing the non-perturbative nuclear matrix element, f

A
F =

hA|F µ⌫
Fµ⌫ |Ai. Various attempts to perturbatively esti-

mate this matrix element have been performed with varying
levels of complexity [28–30]. But, the matrix element also
has nontrivial excited-state structures that likely require a
fully non-perturbative treatment. This matrix element is
similar to those needed for double-beta decay experiments,
estimates for which have substantial variation [31, 32]. Un-
til a more accurate extraction of this matrix element is per-
formed, we will use dimensional analysis arising from non-
relativistic loop momenta counting,

f

A
F ⇠ 3Z

2

↵

M

A
F

R

, (3)

where R = 1.2A

1/3 fm, as used in the double beta de-
cay context, ↵ is the fine-structure constant, and M

A
F is a

dimensionless parameter. With the factor of 3 in Eq. (3),
our expression approximately matches [28, 29] for heavy
nuclei when M

A
F ' 1. To allow for an order of mag-

nitude uncertainty in the nuclear matrix element, we take
1/3 < M

A
F < 3, although a detailed nuclear structure

extraction would be needed for a more precise estimate.
Background field method – In order to extract the elec-

tric polarizability from the lattice, the background field
method is employed, as described in Ref. [33, 34]. The
essence of this method is to measure baryon two-point cor-
relation functions in the presence of a uniform electric field
E . Working in Euclidean space, the background field in-
duces a quadratic Stark shift in the mass of the SU(4)

ground-state baryon,

EB,4c = mB + 2CF |E|2 + O �E4

�
, (4)

where CF is the desired polarizability1, as defined in
Eq. (1).

Due to the scalar nature of the SU(4) baryon ground
state, this relation is equivalent to what one would expect
for mesons. For comparison we also study the fermionic
SU(3) baryon, whose energy shift contains an additional
contribution from the non-zero magnetic moment µB [34],

EB,3c = mB +

✓
2CF � µB

2

8m

3

B

◆
|E|2 + O �E4

�
. (5)

For the SU(3) theory, we must therefore determine µB as
well in order to extract CF from the background field de-
pendence.

The background field method is implemented following
Refs. [33, 34] where the uniform background field is in-
cluded by multiplying the unitary gauge links by two phase

1 The electric polarizability of the neutron ↵E is more commonly defined in
terms of the induced dipole moment ~d = 4⇡↵E

~E , giving a quadratic Stark
shift of �En = 1

2
~d · ~E = 2⇡↵E |E|2. In our notation ↵E = CF /⇡.
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For the SU(3) theory, we must therefore determine µB as
well in order to extract CF from the background field de-
pendence.

The background field method is implemented following
Refs. [33, 34] where the uniform background field is in-
cluded by multiplying the unitary gauge links by two phase

1 The electric polarizability of the neutron ↵E is more commonly defined in
terms of the induced dipole moment ~d = 4⇡↵E

~E , giving a quadratic Stark
shift of �En = 1

2
~d · ~E = 2⇡↵E |E|2. In our notation ↵E = CF /⇡.

• SU(3) case simulated for 
comparison; complicated by 
magnetic moment μB

• Comparable results for SU(3) 
and SU(4), in units of mB.

4

ND mPS/mV m̃B ↵ ˜CF ↵2
˜C0
F µ̃B µ̃0

B �2/dof
4 0.77 0.98204(93) 0.1420(56) -0.089(29) — — 0.7/3

0.70 0.88805(113) 0.1514(106) -0.142(68) — — 4.8/3
3 0.77 0.69812(51) 0.2829(127) -0.177(45) -6.87(26) 714(103) 3.0/7

0.70 0.61904(59) 0.2829(81) -0.165(24) -5.55(18) 396(78) 13.4/7

TABLE I. Results for the polarizabilities and magnetic moments
of the baryonic composites of a strongly-coupled SU(ND) theory,
in lattice units.

Constructing the dimensionless product ↵

˜

CF m̃

3

B (as
needed for the DM cross section), we find that the SU(4)
polarizabilities are larger than SU(3) by about 50%. Thus,
we find the SU(3) and SU(4) polarizabilities to be compa-
rable when normalized to the baryon mass. Of course, the
baryon mass itself scales proportional to ND; if we were
to set the scale using a quantity such as the string tension
which does not scale with ND, then the SU(3) polarizabil-
ity would be larger.

The effect of the quenched approximation, in which dy-
namical fermion loops are omitted from the lattice calcu-
lation, is not straightforward to estimate. However, the ef-
fects of such loops are expected to be suppressed with large
ND and heavy fermion mass; we note that even for QCD
with its much lighter fermions, the effects of quenching are
generally at most of order 10% [37].

Our calculations are performed at a single lattice spac-
ing and volume, both of which can lead to additional
systematic effects. We expect all of these corrections to
be small relative to the order of magnitude uncertainty
taken for the nuclear matrix element M

A
F . As a cross-

check, we note that the neutron polarizability from the
PDG [38] gives CF m

3

n ' 0.36 at the QCD physical ra-
tio mPS/mV = 0.18, while our SU(3) lattice simulations
give CF m

3

B ' 0.84 at mPS/mV = 0.70. These results
are broadly consistent with the expected scaling of the po-
larizability and baryon mass with mPS .

Direct detection cross sections – To relate the dimen-
sionless lattice results to the dimensionful DM mass, mB ,
that we vary continuously in order to scan the parameter
space of the theory, it is most convenient to give units to
the lattice spacing a = m̃B/mB . Along with Eq. (8), this
leads to the physical value of the polarizability

CF = 4⇡↵

✓
m̃B
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◆
3

˜

CF . (16)

Putting everything together, the spin-independent cross
section written as the conventional per nucleon rate for a
nucleus with (Z , A) from Eq. (2) becomes
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where we use our lattice results in Table I to evalate the
factor in square brackets. We emphasize that, unlike Higgs
exchange, the cross section per nucleus scales as Z

4 and

not A

2, and so the cross section per nucleon must be calcu-
lated for each nucleus separately in order to compare with
experiment. The strongest bound on the spin-independent
direct detection scattering rate is from LUX [1]. In Fig. 2,
we show the scattering cross section per nucleon for xenon,
and compare with the LUX bounds. We plot only the
ND = 4 case here, as the ND = 3 baryons are already
excluded up to ⇠ 20 TeV in mass by the LUX bounds
through their magnetic moments [12].

Discussion – Our lattice results have allowed us to
calculate the spin-independent scattering cross section of
SU(4) stealth DM through polarizability, which we com-
pare against the LUX constraints in Fig. 2. We find DM
masses less than about 200 GeV are excluded, while the
DM mass range 200-700 GeV could be probed by fu-
ture experiments before reaching the neutrino background
[39]. Currently, the strongest lower bound on the DM
mass arises indirectly from the constraints on the lighter
electrically-charged mesons that can be produced and de-
cay promptly in collider experiments. Using our results
[23], we estimate that DM masses below about 280 GeV
are excluded given the LEP II bounds on the pseudoscalar
mesons.

It is remarkable that a composite DM particle with a
weak-scale mass, composed of dark fermions charged un-
der the weak and electromagnetic interaction, can never-
theless be safe from both direct detection constraints and
the LEP II constraint once mB

>⇠ 300 GeV. This sug-
gests there is a serious opportunity for future direct detec-
tion experiments to probe the model. Given that the scat-
tering cross section per nucleus scales as Z

4, the exper-
iments with the heaviest nuclei are often more sensitive,
i.e., xenon is 7 times more sensitive than argon if both
experiments reach the same limit on the (conventional)
spin-independent scattering per nucleon through Higgs ex-
change.

With our lattice calculation of the dark matter polariz-
ability in this model, the dominant remaining uncertainty
stems from the treatment of the non-perturbative nuclear
matrix element in Eq. (2), which is similar to the matrix el-
ements required for double beta decay. A significant source
of uncertainty is, for example, the presence of excited states
in Xe-129 and Ge-73 that have energies of 30 and 15 keV,
which will be probed by the loop in the cross section calcu-
lation (typical momenta exchanges are roughly at the MeV
scale). These resonances could appreciably change the re-
sulting cross section, though the steep dependence on the
dark matter mass suggests only a modest equivalent shift
of the DM mass.

The brightest opportunity for stealth dark matter discov-
ery may falls within the domain of the Large Hadron Col-
lider (and future colliders). Meson phenomenology is very
promising, since charged mesons can be produced through
electroweak processes and decay completely into SM par-
ticles. In contrast, production of the dark matter baryon is
rare, since it is considerably heavier than the mesons and

• Technique pioneered by 
Detmold, Tiburzi, Walker-
Loud (arXiv:1001.1131)
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the couples to the Higgs boson. In particular, we set up a
model with masses of both chiral and vector-like origin and
determine the relevant ratios required to allow a theory of
this kind to avoid exclusion due to direct Higgs exchange.
The 3-color and 4-color comparison results are shown in
Fig. 3. This figure shows that the two-parameter large Nc

rotor spectrum prediction in Eq. (15) is insufficient to de-
fine the 4-color baryon spectrum, but the three-parameter
version in Eq. (16) which appropriately accounts for N�1

c

corrections to the leading term does match the higher spin
4-color baryon masses well. It would be interesting to
probe Nc = 6 baryons to see if this relation continues with
all of its coefficients fixed by the current data set.

The results most directly relevant for dark matter impli-
cations of this model are shown in Fig. 4. The key message
to take away from this figure is that the current bounds
of LUX are putting significant restraints on dark fermion
masses of pure chiral origin. The full range of the allowed
spin-0 baryon mass (everything to the right of the verti-
cal line representing the lightest baryon that avoids LEPII
bounds on charged mesons) requires the ratio of the chiral
mass to the vector-like mass (or vector-like mass splitting)
to be below 0.70 when the pseudo-scalar to vector meson
mass ratio is 0.69. This essentially tells us that the vector-
like masses only need to be 50% larger than the chiral
masses to avoid the latest LUX exclusion bound. However,
improved constraints from LUX could reduce this value ap-
preciably.

In addition to the physics implications above, one ad-
ditional purpose of this work is to set the stage for the
more interesting calculation of the polarizabilities, which
can be used to make decisive, lower bounds for experi-
mental searches on asymmetric dark matter theories. As
a prerequisite to attacking this very computationally and
theoretically difficult problem, one must first understand
the lattice systematics at a high precision, all of which are
expected to be significantly worse for extracted polariz-
abilities [56, 57]. To that end, we performed an extensive
study of volume and lattice spacing effects on three lat-
tice spacings (� = 11.028, 11.5, 12.0) and four volumes
(L/a = 16, 32, 48, 64). In particular, we wanted to first
determine the minimum number of sites for volume effects
to be negligible. For the coarsest lattice spacing and inter-
mediate lattice spacing, L/a = 32 was found to be suffi-
cient, but for the finest lattice spacing even L/a = 48 was
found have too small of volume. With this in mind, any
polarizability calculation should not have volumes below
these quantities. The other systematic that had to be quan-
tified is the lattice spacing systematic. The results show as
large sub-5% lattice spacing effects in the coarsest lattice
spacings. For that reason, � = 11.028 and � = 11.5 will
likely prove to be the best ensembles for polarizabilties as
both lattice spacing and volume effects are effectively con-
trolled within errors.

It should also be emphasized that the polarizability cal-
culations can benefit from larger volume, as the quantized
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FIG. 15. Spin-1 (blue) and spin-2 (black) to spin-0 baryon mass
ratio vs meson pseudoscalar to vector mass ratio. Lattice system-
atics appear to be small compared to the statistical errors.

background fields can be made finer and be better used
to extract the quadratic contribution of the energy propor-
tional to the polarizability. However, even more statistics
will be required at each background field value (including
zero field) to resolve these differences. Initial estimates
state than baryon uncertainty will need to be at least a fac-
tor of two smaller than the current values. For that reason,
at least factor of four increase of statistics will likely be
required for each ensemble to reliably perform that calcu-
lation. Also, the question of the validity of the quenched
approximation is still in question. We also plan to perform
at least one unquenched ensemble to estimate the size of
these effects as well.
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FIG. 10. Volume scaling of the spin-0 (brown), spin-1 (blue), and
spin-2 (black) baryon masses in lattice units for the fine lattice
spacing (� = 11.5) and middle quark mass (mPS/mV ⇠ 0.7) for
lattice sizes of 163⇥32, 323⇥64, 483⇥96, and 643⇥128 (bottom
figure zoomed in on the later three). Volume effects between 323

and 483 lattices are smaller than the statistical error, but with a
systematic drop within 3%.

umes, L/a = 16, 32, 48, 64. Comparing L/a = 16 to
L/a = 32, there is clearly enormous volume effects on the
order of 100%. For this reason, the L/a = 16 data at this
lattice spacing is essentially unusable. The more informa-
tive comparison is between L/a = 32 to L/a = 48, where
the volume effects are much more manageable, but still on
the order of 7% and larger than the statistical uncertainty.
For this reason, L/a = 32 cannot be considered nearly in-
finite volume and L/a = 48 or larger are required. To tell
if L/a = 48 is sufficiently close to infinite volume, a larger
L/a = 64 volume is required. While the volume effects
between L/a = 48 and L/a = 64 are smaller, there is still
a clear systematic decrease due to finite volume of roughly
4%. In other words, through L/a = 64, all quantifiable
volume effects are non-negligible.

Also, it is useful to examine the data on an Edinburg-
style plot in Fig. 12, where quantities of different lattice
spacings can be compared directly. This plot displays the
mass ratio MSO/mV vs. mPS/mV for the coarse (� =

11.028), intermediate (� = 11.028) and fine (� = 12.0)
lattice spacing for 32

3 ⇥ 64 lattices. In the absence of lat-
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FIG. 11. Volume scaling of the spin-0 (brown), spin-1 (blue), and
spin-2 (black) baryon masses in lattice units for the fine lattice
spacing (� = 12.0) and middle quark mass (mPS/mV ⇠ 0.7) for
lattice sizes of 163⇥32, 323⇥64, 483⇥96, and 643⇥128 (bottom
figure zoomed in on the later three). Volume effects between 323

and 483 lattices are roughly 7% of spin-0 baryon mass and larger
than 3% from 483 to 643.

tice volume effects, one would expect these ratios to de-
crease as the fermion mass decreases. This behavior is
clear in the coarse lattice results and the heavier four points
on the intermediate lattice spacing. However, for the fine
lattice spacing, the ratio MSO/mV is roughly independent
of fermion mass. This is often an indication that volume
effects are significant. This figure, once again, supports the
hypothesis that 32

3 lattices are large enough volumes for
the coarse and intermediate lattice spacing, but not large
enough for the fine lattice spacing.

Lattice spacing systematic

Before discussing lattice spacing effects, one must first
determine some physics that remains constant between two
different lattice spacing, often referred to as a line of con-
stant physics (LCP) with minimal volume effects, and then
proceed to compare other quantities directly. The quan-
tity that we choose as our LCP is the meson mass ratio
mPS/mV . In most dark matter models of interest, he vec-
tor and psuedoscalar mesons are not of direct interest, mak-

Finite-volume effects

Cutoff effects
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nations

ONF=2
B,1 = (UTX1U)(UTX2D),

ONF=2
B,2 = (UTX1D)(UTX2U),

ONF=2
B,3 = (UTX1U)(DTX2D),

ONF=2
B,4 = (UTX1D)(UTX2D), (12)

for three flavors ( i = U, D, S), there are three unique
combinations

ONF=3
B,1 = (UTX1U)(DTX2S),

ONF=3
B,2 = (UTX1D)(UTX2S),

ONF=3
B,3 = (DTX1S)(UTX2U) (13)

and for four flavors ( i = U, D, S, C), there is only one
unique combination

ONF=4
B,1 = (UTX1D)(STX2C). (14)

Since these combinations span over the entirety of the the
flavor space, one would expect to have overlap with the
ground state in each (lattice) spin channel.

COMPARISON OF 3 AND 4 COLOR BARYONS

At a fixed scale (such as the string tension), mesons and
baryons spectrums are expected to have significantly differ-
ent behavior at different values of Nc. Low-lying mesons
states are not expected to change appreciably as Nc in-
creases (O(1) in Nc-scaling), while baryons, which con-
tain Nc fermions in a color-antisymmetric combination,
are expected to see appreciable scaling as Nc increases
(O(Nc) in Nc-scaling). For large Nc baryons, the behavior
of the spectrum is contained in a simple relation based on
the rotor spectrum [31, 35, 38]

M(Nc, J) = Ncm0 +

J(J + 1)

Nc

B + O(1/N 2
c ), (15)

where J is the baryon spin and m0 and B are constants that
need to be extracted from two initial input values. These
kinds of large-Nc relations have been seen to fit remark-
ably well for phenomenological extractions of the baryon
spectrum and splitting (including strange-light mass split-
tings) [35], in lattice 3-color calculations where a variety
of light and strange masses [50], and this rotor spectrum
itself has been shown to work to high precision for odd Nc

baryons with three, five, and seven colors [38, 39]; well
better than would would naively expect up to O(1/N 2

c )

corrections. One common theme between previous spec-
trum comparisons of this kind is that all the baryons were
fermionic as in QCD. This begs the question of how the the
large Nc relations fare when comparing fermionic baryons
in odd Nc theories to bosonic baryons in even Nc.

One point that was emphasized in Ref. [39] is the fact
that each coefficient in Eq. (15) has corrections that go as
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FIG. 3. Comparison of 3-color (square, dashed) and 4-color
(circle, solid) spectrum for the pseudoscalar (red), vector (or-
ange), 3-color spin-1/2 baryon (purple), 3-color spin-3/2 baryon
(green), 4-color spin-0 baryon (brown), 4-color spin-1 baryon
(blue), and 4-color spin-2 baryon (black). All calculations shown
were for 323 ⇥ 64 lattices. The two-parameter rotor spectrum
4-color predictions, Eq. (15), using the 3-color baryon spectrum
input are given by the asterisks, which spin-0 is the lightest and
spin-2 is the heaviest. Similarly, the three-paramter rotor spec-
trum predictions for the 4-color spin-1 and spin-2 baryon masses,
Eq. (16),where the 3-color baryon spectrum and 4-color spin-0
baryon mass are input, are given by the diamonds.

N�1
c , N�2

c , etc. With that in mind, in the formal large Nc

limit, Eq. (15) should be written as [39]

M(Nc, J) = Ncm
(0)
0 + C +

J(J + 1)

Nc

B + O(1/N 2
c ),

(16)
where m(0)

0 is the leading O(1) contribution to m0 and
C is the subleading O(1/Nc) correction to m0. With
two degenerate flavors, 3-color QCD can only provide two
points of input for these formulas (the spin-1/2 and spin-
3/2 baryon mass). For that reason, Eq. (15) with two free
parameters is completely determined by 3-color QCD in-
put, while Eq. (16) requires one more state from a different
Nc to fix its three free parameters.

In Fig. 3, 3-color (dashed squares) and 4-color (solid cir-
cles) results are compared for � values that were chased to
match the string tension in Ref. [28]. Also, fermion masses
between these two theories were chosen in Ref. [28] to
match the pion mass. As a result, the vector mass, which
is not expected to have any appreciable scaling at differ-
ent Nc match quite well between the two theories. Also,
as expected, the baryon masses for the 4-color theory are
all significantly larger than the 3-color theory. However,
what is worth noting here here is that the two-parameter
rotor spectrum predictions (black asterisks) from Eq. (15)
for the 4-color baryons using the 3-color baryon input does
not align with the lattice 4-color results, while the three-
parameter rotor-spectrum (black diamonds) in Eq. (16) is
consistent with the lattice values for the spin-1 and spin-2
baryons. Inherently, fermionic and bosonic baryon have
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⇤ : M(Nc, J) = Ncm0 +
J(J + 1)

Nc
B +O(1/N2

c )

⇧ : M(Nc, J) = Ncm
(0)
0 + C +

J(J + 1)

Nc
B +O(1/N2

c )

Red- Pseudoscalar
Orange - Vector
Purple - Spin 1/2
Green - Spin 3/2
Brown - Spin 0
Blue - Spin 1
Black - Spin 2

Solid - 4 colors
Dashed - 3 colors
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SU(3) polarizability vs. the PDG

• Our polarizability differs from the PDG convention:
↵E = CF /⇡

• Have to compare at 
very different masses!  
Expected scaling is

��� ��� ��� ��� ��� ���
�π /�ρ

�
��
α

↵E ⇠ A

m⇡
+B

mB ⇠ C +Dm2
⇡

• Qualitative agreement 
with expected trend! 
(Can’t fit well - mass 
range too large.)

(LSD, this work)

(PDG entry for neutron)
(Detmold, Tiburzi, and Walker-Loud,  

PRD81 (054502), 2010)


