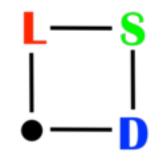


Non-Perturbative Collider Phenomenology of Stealth Dark Matter

Ethan T. Neil *(CU Boulder/RIKEN BNL)* for the LSD Collaboration USQCD All Hands Meeting May 1, 2015



Lattice Strong Dynamics Collaboration



Xiao-Yong Jin James Osborn

Rich Brower Michael Cheng Claudio Rebbi Evan Weinberg

Ethan Neil

Ethan Neil Sergey Syritsyn

Meifeng Lin

Graham Kribs

Joe Kiskis

Oliver Witzel

Evan Berkowitz Enrico Rinaldi Chris Schroeder Pavlos Vranas

David Schaich

Tom Appelquist George Fleming

Mike Buchoff

Strongly-coupled composite dark matter

• Our focus: composite DM as a <u>strongly-bound</u> state of some more fundamental objects (think of the neutron)

- Non-Abelian SU(N_D) gauge sector, with some fermions in the fundamental rep. Not the only possibility (e.g. "dark atoms", other non-Abelian theories) but a well-motivated, somewhat familiar foundation.
- Constituents can carry SM charges, and charged excited states active in early universe. Composite DM relic interacts via SM particles (photon, Higgs) but with form factor suppression!

- Start with $SU(N_D)$ gauge theory and N_F Dirac fermions, in the fundamental rep, and impose some conditions.
- First requirement: baryons are bosons even N_D. No magnetic moment. N_D≥4 gives automatic DM stability from Planck-scale violations.
- Second requirement: couplings to electroweak and Higgs one EW doublet and one singlet, N_F≥3. Ensures meson decay as well.
- Third requirement: custodial SU(2) for electroweak precision $N_F=4$. As a bonus, charge radius is eliminated —> stealth DM!

Stealth dark matter: model details

Field	$SU(N_D)$	$(SU(2)_L, Y)$	Q
$F_1 = \begin{pmatrix} F_1^u \\ F_1^d \end{pmatrix}$	\mathbf{N}	(2 ,0)	$\binom{+1/2}{-1/2}$
$F_2 = \begin{pmatrix} F_2^u \\ F_2^d \end{pmatrix}$	$\overline{\mathbf{N}}$	(2 ,0)	$\begin{pmatrix} +1/2 \\ -1/2 \end{pmatrix}$
F_3^u	Ν	(1, +1/2)	+1/2
F_3^d	Ν	(1, -1/2)	-1/2
F_4^u	$\overline{\mathbf{N}}$	(1, +1/2)	+1/2
F_4^d	$\overline{\mathbf{N}}$	(1, -1/2)	-1/2

EW-preserving mass:

 $\mathcal{L} \supset M_{12} \epsilon_{ij} F_1^i F_2^j - M_{34}^u F_3^u F_4^d + M_{34}^d F_3^d F_4^d + h.c., \bullet$ **EW-breaking mass:**

$$\mathcal{L} \supset y_{14}^{u} \epsilon_{ij} F_{1}^{i} H^{j} F_{4}^{d} + y_{14}^{d} F_{1} \cdot H^{\dagger} F_{4}^{u} - y_{23}^{d} \epsilon_{ij} F_{2}^{i} H^{j} F_{3}^{d} - y_{23}^{u} F_{2} \cdot H^{\dagger} F_{3}^{u} + h.c. ,$$

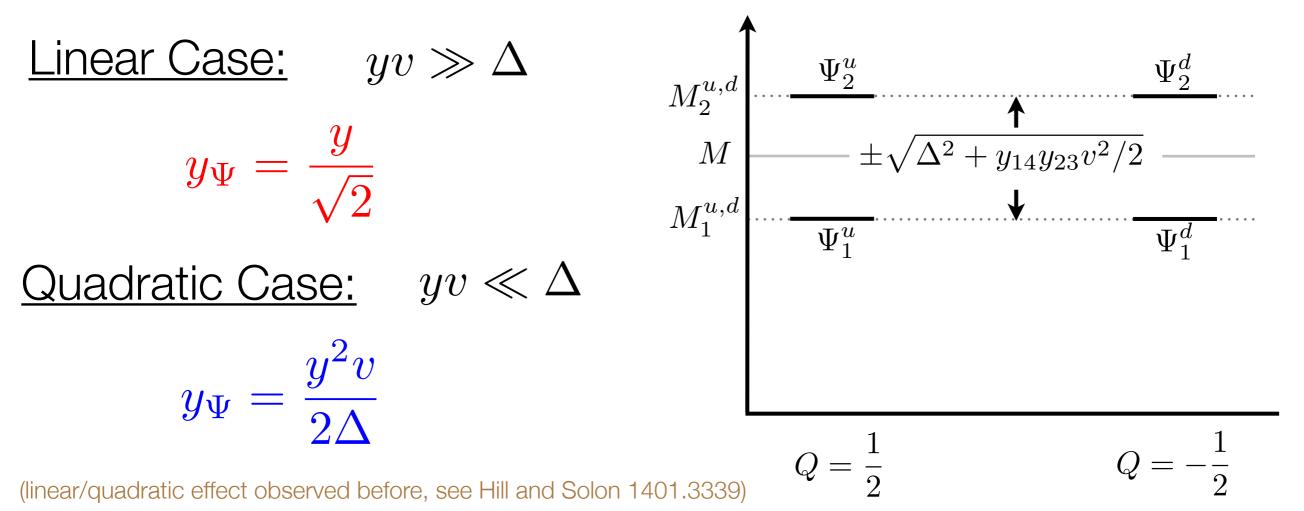
- SU(4) gauge group with 4 Dirac fermions (SU(2)_L and SU(2)_R doublets)
- <u>Two</u> sources of mass allowed: vector-like and Higgs-Yukawa
 - Custodial symmetry is identified as u <—> d exchange symmetry

Mass eigenstates

Two sources of mass, electroweak breaking and preserving.

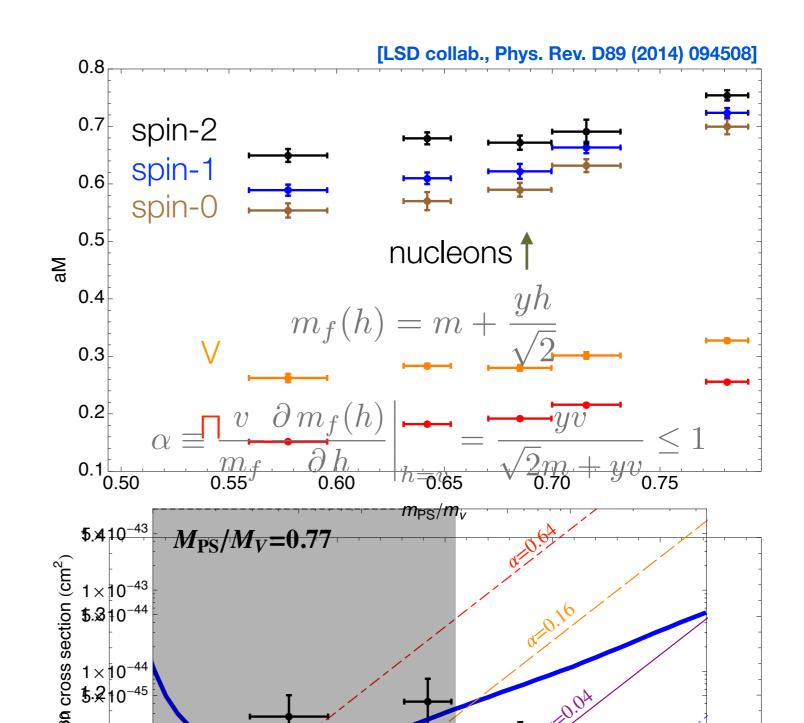
$$M \equiv \frac{M_{12} + M_{34}}{2} \qquad \Delta \equiv \left| \frac{M_{12} - M_{34}}{2} \right|, \qquad y_{14} = y + \epsilon_y, \quad y_{23} = y - \epsilon_y, \quad |\epsilon_y| \ll |y|.$$

• Assume *yv*<<*M*, to avoid vacuum alignment issues w/EWSB. Then two regimes arise, depending on the origin of the mass splitting:



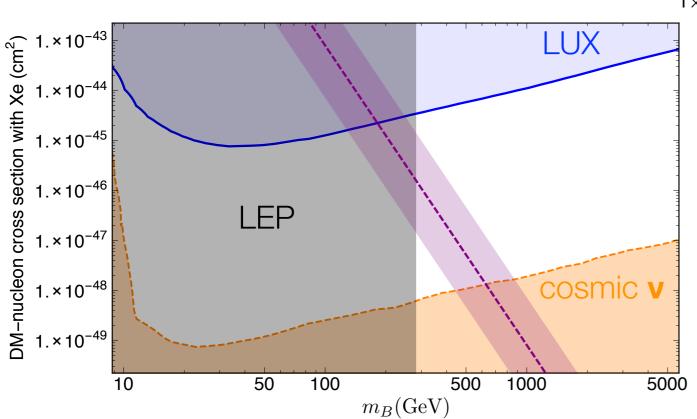
Stealth dark matter on the lattice

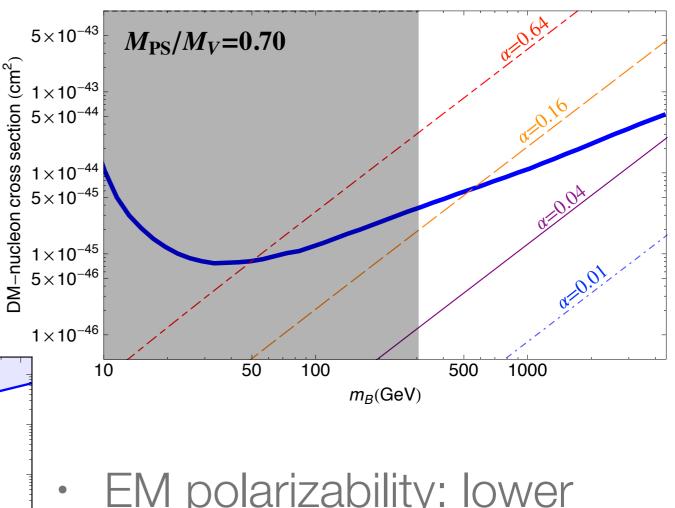
- <u>The model:</u> SU(4) gauge theory at moderately heavy fermion mass
- On the lattice: plaquette gauge action, Wilson fermions (quenched)
- Spectrum shown to the right



Stealth dark matter: lattice results so far

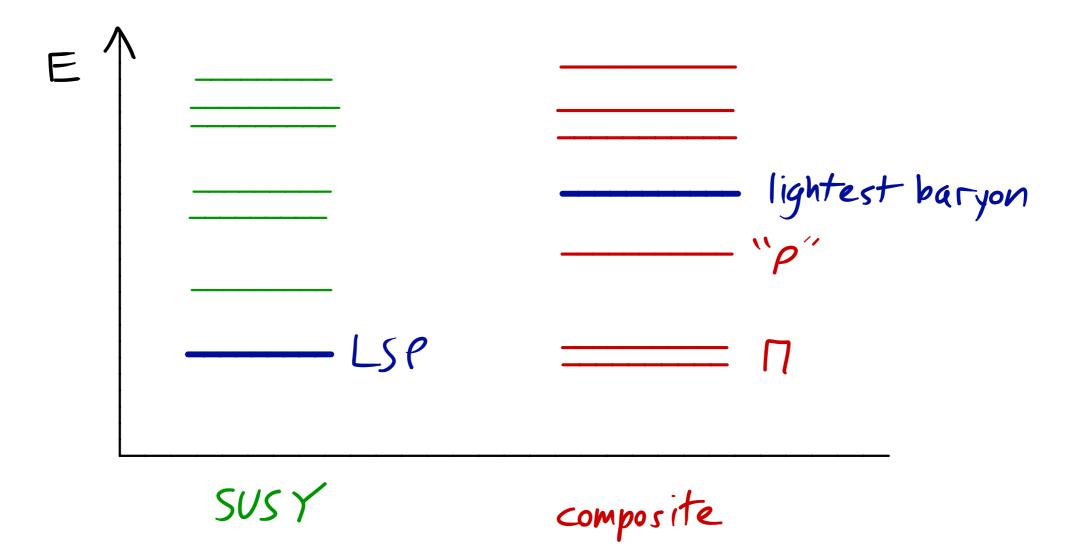
<u>Spectrum and scalar</u>
 <u>current calculation</u>: mass
 generation from Higgs
 strongly constrained.





<u>EM polarizability:</u> lower bound on direct detection for theories with charged constituents. Stealth DM visible below a TeV or so.

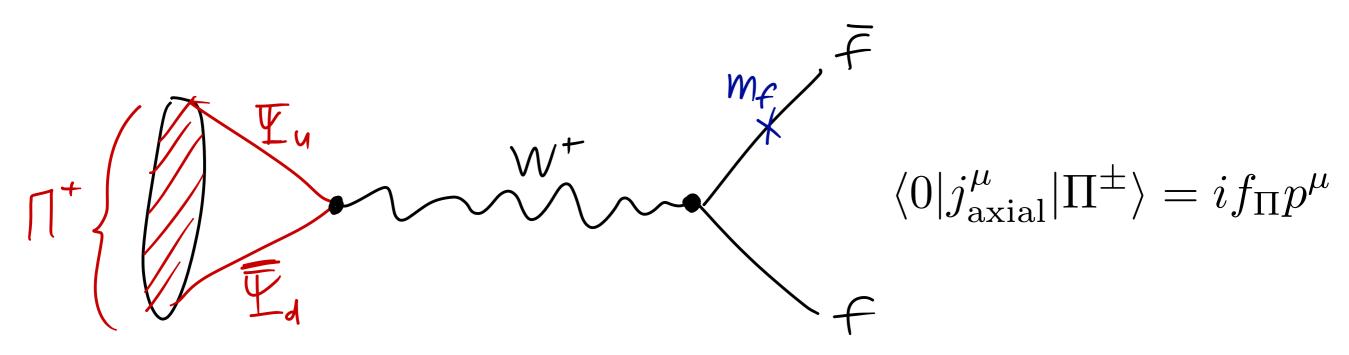
Comparison between typical SUSY DM and composite DM:



- DM is far from lightest particle in the new sector! Much harder to produce directly in colliders, so MET signals are greatly suppressed.
- On the other hand, presence of the much lighter and charged Π states gives strong bounds from complementary searches.

Meson decay

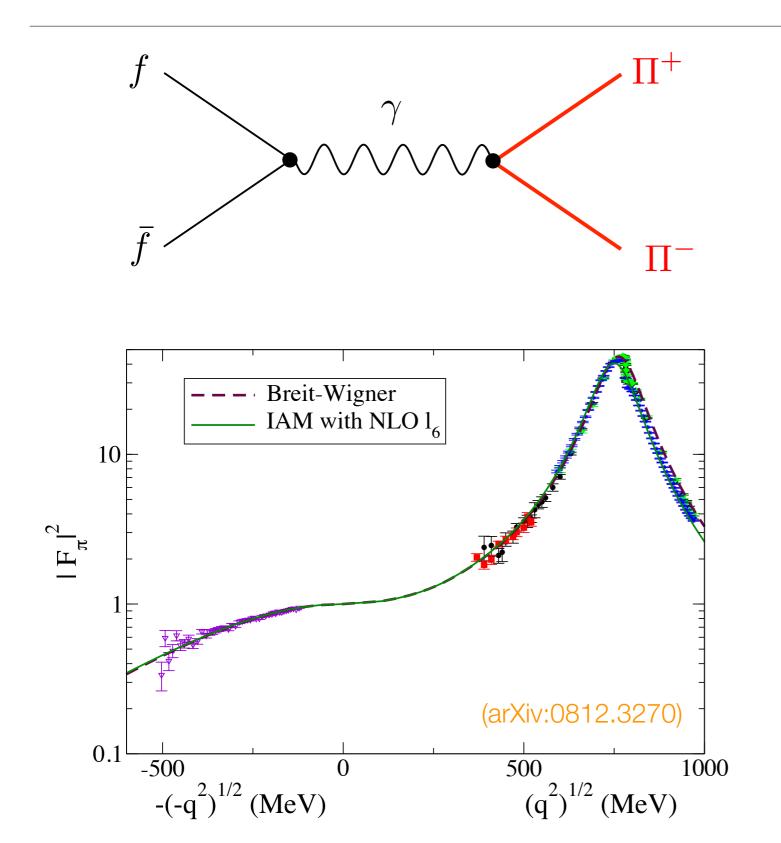
 Important consequence of electroweak coupling: allow mesons to decay, especially the charged ones!



 Mass flip in final state, due to decay of pseudoscalar bound state (same for QCD pions.) Gives preferred decay to <u>heaviest</u> SM states:

$$\Gamma(\Pi^+ \to f\overline{f}') = \frac{G_F^2}{4\pi} f_{\Pi}^2 m_f^2 m_{\Pi} c_{\text{axial}}^2 \left(1 - \frac{m_f^2}{m_{\Pi}^2}\right)$$

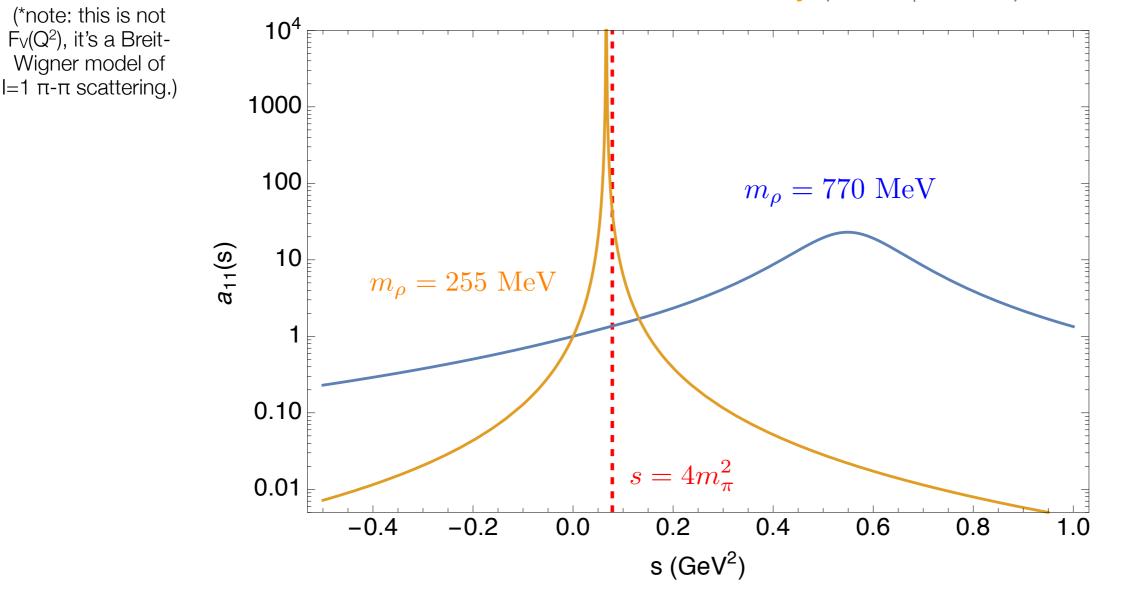
Meson production



- First signature expected:
 Drell-Yan photon
 production of charged Π
- To calculate rate, pion form factor needed at threshold: $F_V(Q^2=4m_{\Pi}^2)$
- Hard to access at this momentum on lattice. In QCD, "vector meson dominance" does pretty well...

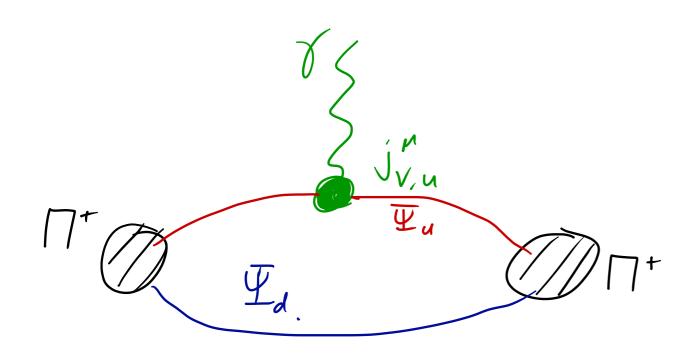
How the picture changes for m_{ρ} below threshold:

π-π scattering amplitude with m_{π} =140 MeV, for QCD (m_{π}/m_{ρ} ~0.18) and for a stealth-DM-like theory (m_{π}/m_{ρ} ~0.55)



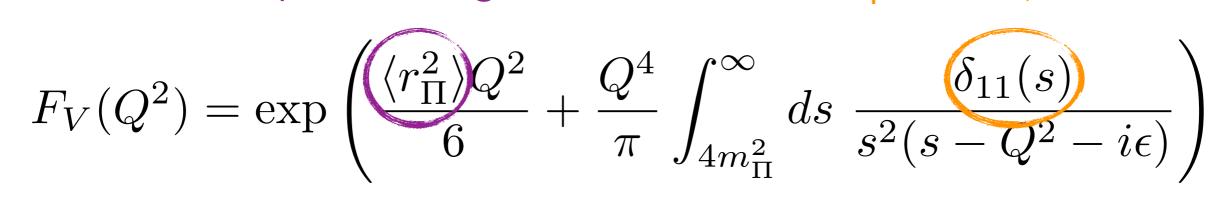
- Here, "rho" resonance is below 2π threshold but it's also much closer to the threshold. Vector-meson dominance should be reliable, but further study is needed
- The "dark rho" is very narrow, since decay to ππ is closed. Another (TeV-scale) state to look for in colliders!

Our plan



- Determine "stealth p" decay constant and calculate decay width
- Measure "stealth π " $F_V(Q^2)$ at <u>space-like</u> momenta from threepoint function (pion charge radius)
- Combine with vector-meson dominance model to predict $F_V(4m_{\Pi}^2)$ for collider production

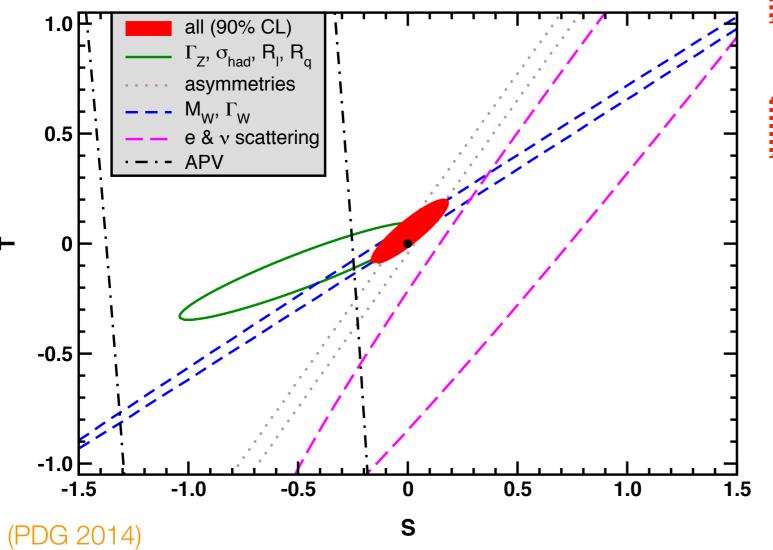
p width, mass



pion charge radius

Electroweak precision

 No T parameter by construction (custodial symm), but S parameter is an important constraint! Two asymptotic forms of S contribution:



$$M_{2} \gg M_{1}$$

$$\Pi_{3Y}(q^{2}) = \frac{1}{8} \frac{y^{2}v^{2}}{y^{2}v^{2} + 2\Delta^{2}} \Pi_{VV}(q^{2})$$

$$M_{1} \approx M_{2}$$

$$\Pi_{3Y}(q^{2}) \approx \frac{\epsilon_{y}^{2}v^{2}}{4M^{2}} \Pi_{LR}(q^{2})$$

 Calculation of strongcoupling part yields
 direct bounds on Yukawa
 couplings (important for asymmetric relic density)

Lattice calculation details

- Form factor: calculate $\langle \pi(t)V_{\mu}(t')\pi(0) \rangle$ and $\langle \pi(t)\pi(0) \rangle$. Construct appropriate ratio to extract vector-current matrix element.
- Three vector-current insertion locations, four sources per config —> 12 Wilson propagators; 500 (pure-gauge) configurations.
- <u>S-parameter:</u> calculate conserved-local correlators $<V_{C}(x)V_{L}(0)>$ and $<A_{C}(x)A_{L}(0)>$. Two source positions, $L_{s}=8$.
- By-products of DWF calculation: F_{π} , mass renormalization (m_f/M_B).

Resource request

β	vol	ĸ	$m_{PS}L$	m_{PS}/m_V	Cost (DWF)	Cost (Wilson)	Total cost
11.028	$32^3 \times 64$	0.1554	11.1	0.76	0.61	0.46	1.07
		0.15625	9.2	0.69		0.68	1.58
		0.1568	7.7	0.62	1.28	0.97	2.25
		0.1572	6.6	0.55		1.36	3.16
		0.1575	5.9	0.49	2.55	1.93	4.48
11.5	$32^3 \times 64$	0.1523	6.1	0.69	0.90	0.68	1.58
Total					5.34	6.08	11.42

- Three mass points for domain-wall S parameter calculation; we expect mild mass dependence, based on experience
- One point at β=11.5, to test discretization effects (spectroscopy here shows no significant deviations)
- We are working on a new fully threaded/vectorized code base, meant to replace QDP/C; Wilson solver in progress. Up to 2x speed-up in calculations expected, but no benchmarks available yet, and we don't include this factor above

Backup slides

Stability of composite dark matter candidates

$$\Pi \sim \bar{\Psi} \Psi \qquad \qquad B \sim \Psi \Psi ... \Psi \qquad \longleftarrow N_D \text{ constituents}$$

 Lightest mesons (Π) can be stabilized by flavor symmetries* or G-parity**, but then one has to argue against the presence of dimension-5 operators like

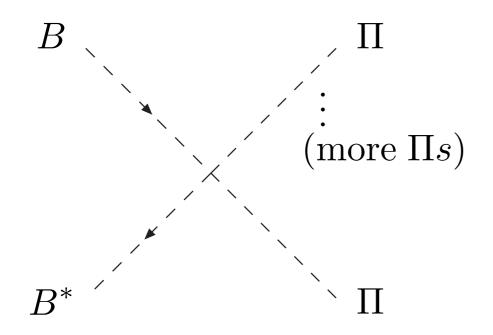
 $\frac{1}{\Lambda} \bar{\Psi} \Psi H^{\dagger} H \longrightarrow \text{ instability over lifetime of the universe.}$

• Accidental dark baryon number symmetry provides automatic stability for B on very long timescales (as long as $N_D > 2!$) E.g. for $N_D=4$, decay through dimension-8(!)

$$\frac{1}{\Lambda^4}\Psi\Psi\Psi\Psi H^{\dagger}H$$

Abundance

Symmetric



If 2 -> 2 dominates thermal annihilate rate and saturates unitarity, expect

 $m_B \sim 100 {
m TeV}$ Griest, Kamionkowski; 1990 Unfortunately, this is hard calculation to do using lattice...

Asymmetric

e.g., through EW sphalerons

Chivukula, Farhi, Barr; 1990

$$n_D \sim n_B \left(\frac{yv}{m_B}\right)^2 \exp\left[-\frac{m_B}{T_{\rm sph}}\right]$$

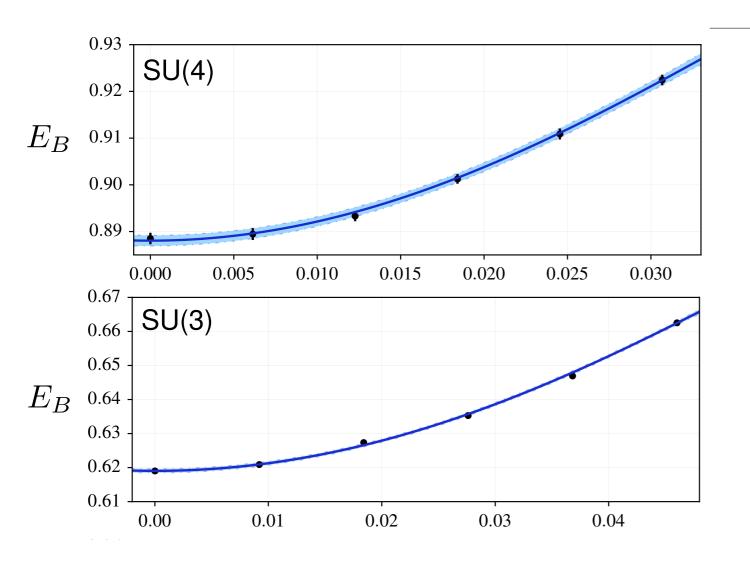
IF EW breaking comparable to EW preserving masses, expect roughly

$$m_B \lesssim m_{\rm techni-B} \sim 1 \,{\rm TeV}$$

How much less depends on several factors...

(slide from G. Kribs)

Polarizability on the lattice



N_D	m_{PS}/m_V	\tilde{m}_B	$lpha ilde C_F$	$\alpha^2 \tilde{C}'_F$	$ ilde{\mu}_B$	$\tilde{\mu}_B'$	χ^2/dof
4	0.77	0.98204(93)	0.1420(56)	-0.089(29)			0.7/3
	0.70	0.88805(113)	0.1514(106)	-0.142(68)	_		4.8/3
3	0.77	0.69812(51)	0.2829(127)	-0.177(45)	-6.87(26)	714(103)	3.0/7
	0.70	0.61904(59)	0.2829(81)	-0.165(24)	-5.55(18)	396(78)	13.4/7

- Technique pioneered by Detmold, Tiburzi, Walker-Loud (arXiv:1001.1131)
- Measure response to applied background field E (quadratic Stark shift)

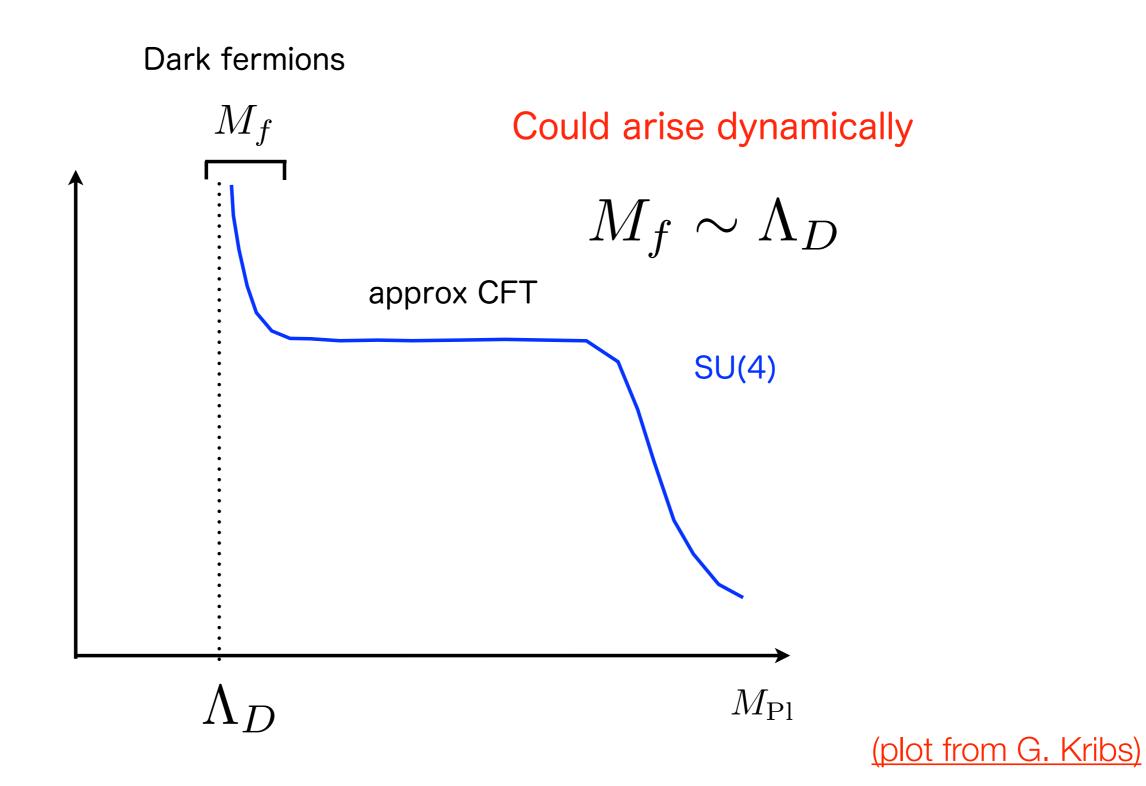
$$E_{B,4c} = m_B + 2C_F |\mathcal{E}|^2 + \mathcal{O}\left(\mathcal{E}^4\right)$$

- SU(3) case simulated for comparison; complicated by magnetic moment μ_{B}

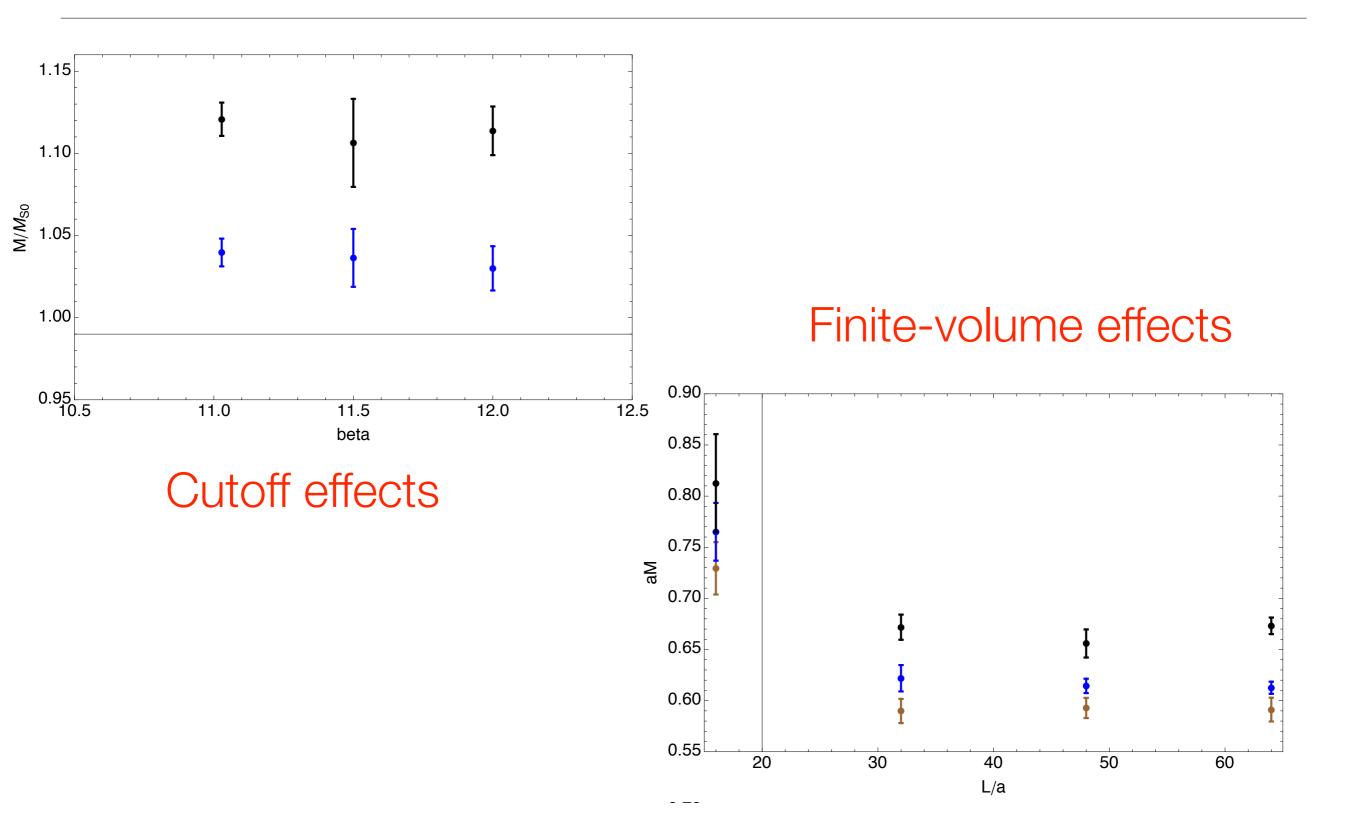
$$E_{B,3c} = m_B + \left(2C_F - \frac{\mu_B^2}{8m_B^3}\right) \left|\mathcal{E}\right|^2 + \mathcal{O}\left(\mathcal{E}^4\right)$$

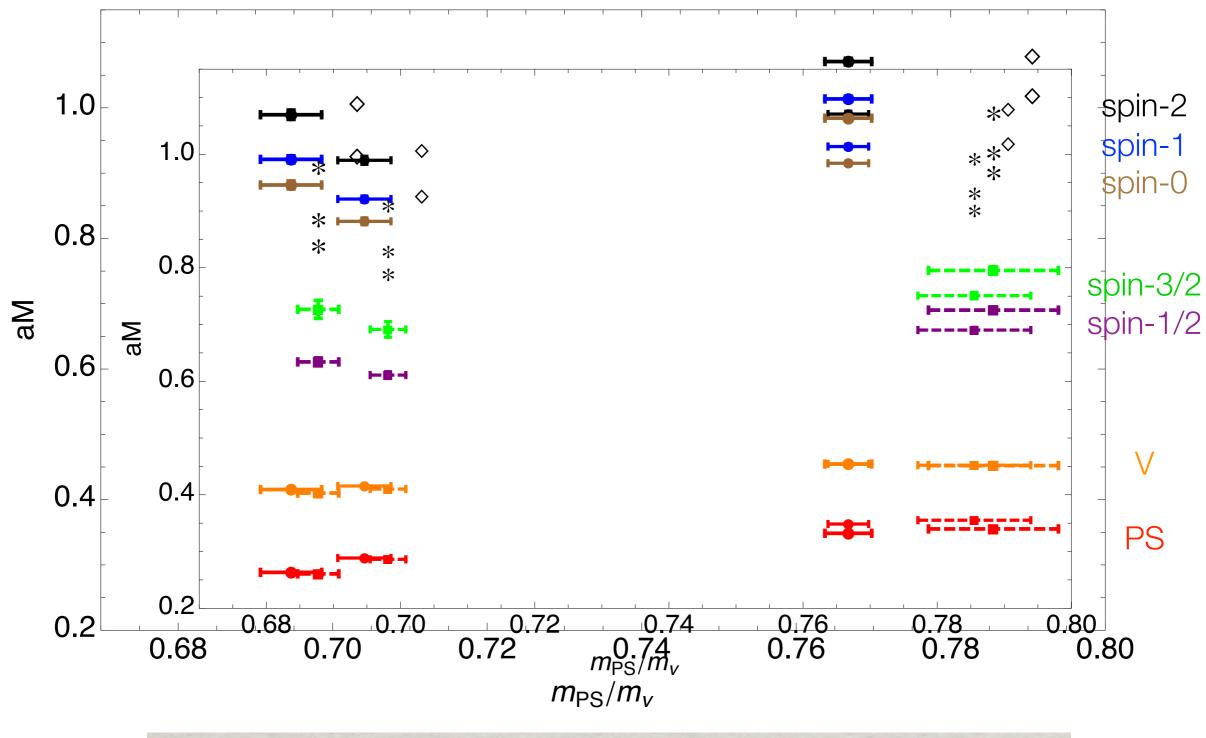
• Comparable results for SU(3) and SU(4), in units of m_B .

Mass scales



Study of systematic effects





*:
$$M(N_c, J) = N_c m_0 + \frac{J(J+1)}{N_c}B + \mathcal{O}(1/N_c^2)$$

 $\diamond: M(N_c, J) = N_c m_0^{(0)} + C + \frac{J(J+1)}{N_c}B + \mathcal{O}(1/N_c^2)$

SU(3) polarizability vs. the PDG

• Our polarizability differs from the PDG convention:

$$\alpha_E = C_F / \pi$$

