Report on the Clusters at Fermilab

Don Holmgren USQCD All-Hands Meeting Fermilab May 1-2, 2015

Hardware – Current and Next Clusters

<u>Name</u>	<u>CPU</u>	Nodes	<u>Cores</u>	<u>Network</u>	DWF	<u>HISQ</u>	<u>Online</u>
Ds (2010) (2011)	Quad 2.0 GHz Opteron 6128 (8 Core)	421	13472	Infiniband Quad Data Rate	51.2 GFlops per Node	50.5 GFlops per Node	Dec 2010 Aug 2011
Dsg (2012)	NVIDIA M2050 GPUs + Intel 2.53 GHz E5630 (quad core)	76	152 GPUs 608 Intel	Infiniband Quad Data Rate	29.0 GFlops per Node (cpu)	17.2 GFlops per Node (cpu)	Mar 2012
Bc (2013)	Quad 2.8 GHz Opteron 6320 (8 Core)	224	7168	Infiniband Quad Data Rate	57.4 Gflops per Node	56.2 Gflops per Node	July 2013
Pi0 (2014) (2015)	Dual 2.6 GHz Xeon E2650v2 (8 core)	314	5024	Infiniband QDR	69.0 Gflops per Node	53.4 Gflops per Node	Oct 2014 Apr 2015
Pi0g (2014)	NVIDIA K40	32	128 GPUs 512 cores	Infiniband QDR	69.0 Gflops per Node (cpu)	53.4 Gflops per Node (cpu)	Oct 2014

Storage

- Global disk storage:
 - 964 TiB Lustre filesystem at /lqcdproj
 - ~ 6 TiB "project" space at /project (backed up nightly)
 - ~ 6 GiB per user at /home on each cluster (backed up nightly)
- Robotic tape storage is available via *dccp* commands against the dCache filesystem at /pnfs/lqcd
 - Some users will benefit from direct access to tape by using *encp* commands on lqcdsrm.fnal.gov
- Worker nodes have local storage at /scratch

Storage

- Two Globus Online (GO) endpoints:
 - usqcd#fnal for transfers directly into our out of FNAL's robotic tape system. Use DOE or OSG certificates, or Fermilab KCA certificates. You must become a member of either the FNAL LQCD VO or the ILDG VO. There continue to be compatibility issues between GO and "door" nodes; globus-url-copy or gridftp may be a better choice for some endpoints.
 - lqcd#fnal for transfers into our out of our Lustre file system (/lqcdproj).
 You must use a FNAL KCA certificate. See http://www.usqcd.org/fnal/globusonline.html
- Two machines with 10 gigE connections:
 - lqcdgo.fnal.gov used for Globus Online transfers to/from Lustre (/lqcdproj), not available for interactive use
 - lqcdsrm.fnal.gov best machine to use for moving data to/from tape.

Storage – Lustre Statistics

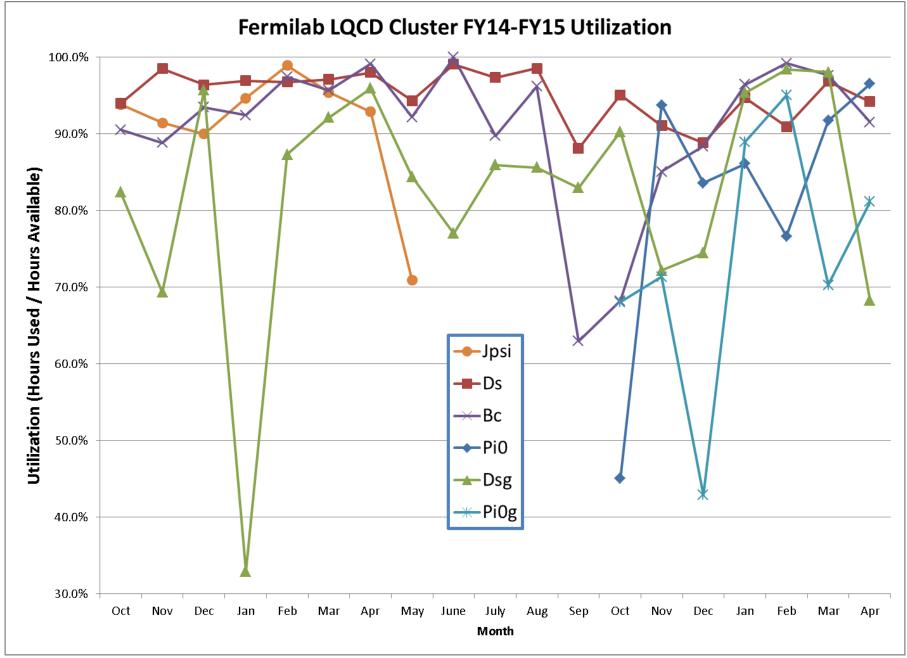
- 964 TiB capacity, 793 TiB currently used, 138 disk pools (2013: 847 TiB capacity, 773 TiB used in 130 pools)
- 108M files (85M last year)
- File sizes: 1.9 TiB maximum (an eigensystem file) 7.67 MiB average (9.52 MiB last year)
- Directories:797K (479K last year) 801K files in largest directory

Storage – Planned Changes

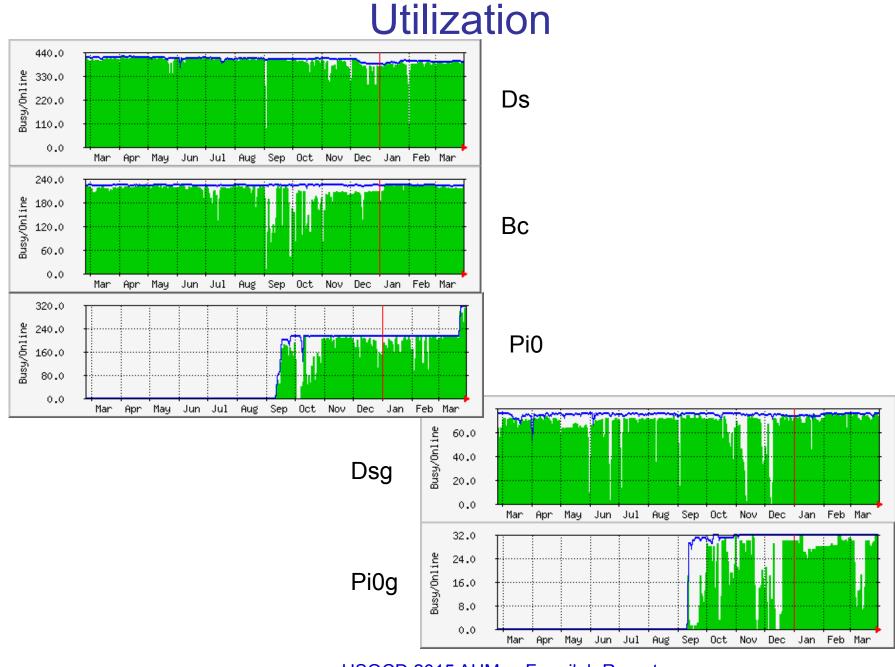
Our current Lustre software (1.8.8) is essentially End-of-Life (maintenance releases only), so we have started a second Lustre instance (2.5.3)

- Best feature of the new Lustre is data integrity checking and correction because of the backing ZFS filesystem
- We have also just completed the migration of our /project workflow area to ZFS
- By late summer we will migrate all existing data to the new Lustre
- Migrations to 2.5.3 will be done project-by-project
- We will attempt to make this as transparent as possible, but it might require a short break in running a given project's jobs
- We have hardware in hand to expand /lqcdproj by about 380 TB, but we will also retire old RAID arrays this year containing 100 to 150 TB

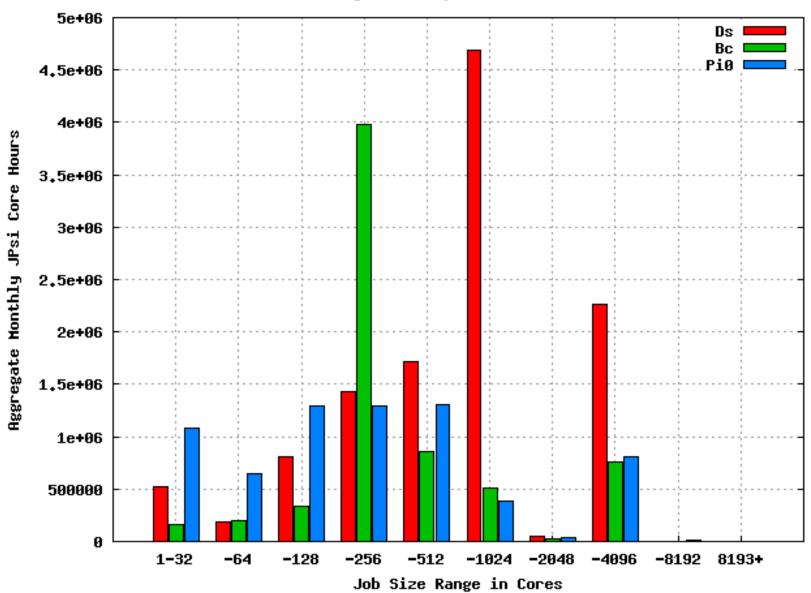
Storage – Date Integrity


- Some friendly reminders:
 - Data integrity is your responsibility
 - With the exception of home areas and /project, backups are not performed
 - Make copies on different storage hardware of any of your data that are critical
 - Data can be copied to tape using dccp or encp commands. Please contact us for details. We have never lost LQCD data on Fermilab tape (~ 4 PiB and growing, up from 2.28 PiB last year).
 - At 138 disk pools and growing, the odds of a partial failure will eventually catch up with us

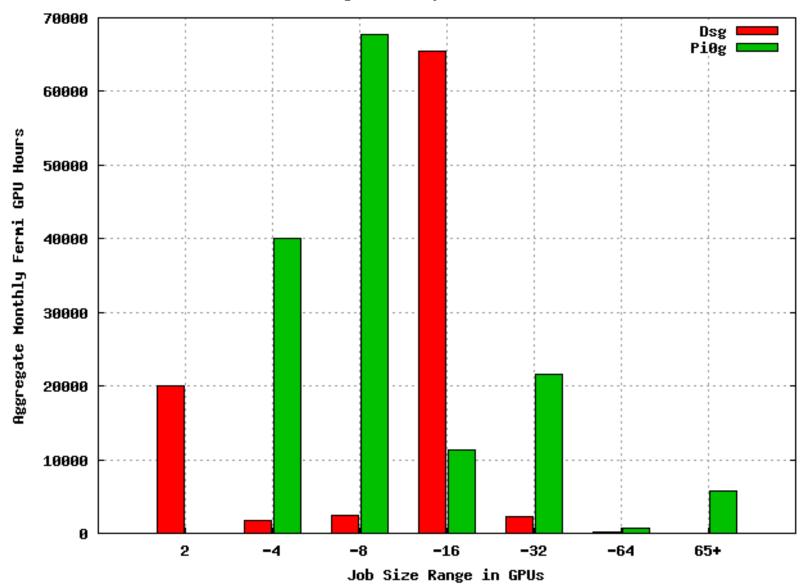
Statistics


- May 2014 through April 2015 including JPsi, Ds, Dsg, Bc, Pi0, Pi0G
 - 360K jobs
 - 271.6M JPsi-core-hours
 - 2.13 GPU-MHrs
- USQCD users submitting jobs:
 - FY10: 56
 - FY11: 64
 - FY12: 59
 - FY13: 60
 - FY14: 53
 - FY15: 48 thru April

Progress Against Allocations


- Total Fermilab allocation: 272.7M JPsi core-hrs
 2815 GPU-KHrs
- Delivered to date: 231.9M (85.0%, at 82.5% of the year) 2083 GPU-KHrs (74.0%)
 - Does not include disk and tape utilization (roughly 14M + 1.5M)
 - Class A (19 total): 5 finished, 2 at or above pace (213M, 1729K)
 - Class B (4 total): 3 finished, 0 at or above pace (6.9M, 34.6K)
 - Class C: 8 for conventional, none for GPUS (2.8M, 0K)
 - Opportunistic: 5 conventional (9.5M), 4 GPU (320K)
- As was the case last year, a high number of Class A projects started late and/or are running at a slow pace

USQCD 2015 AHM Fermilab Report



USQCD 2015 AHM Fermilab Report

Fermilab May 2014 - April 2015 Job Statistics

USQCD 2015 AHM Fermilab Report

Fermilab May 2014 - April 2015 Job Statistics

USQCD 2015 AHM Fermilab Report

Planned Operating System Upgrades

- Ds, Dsg, Bc all run Scientific Linux 5. Pi0 and Pi0g use Scientific Linux 6.
- At the beginning of the program year (July 1), we will move Ds, Dsg, and Bc to SL6 to match Pi0 and Pi0g
 - User binaries will have to be rebuilt
- Once Lustre (/lqcdproj) has been migrated to the new version (2.5.3, late summer) we will upgrade the Infiniband fabric software
 - This allows use of Lustre 2.5.3 clients (1.8.8 clients during migration), which gives us more flexibility to move to newer Lustre versions
 - It will also enable all available Mellanox/NVIDIA GPUDirect optimizations on Pi0g
 - This IB upgrade will force us to rebuild MPI libraries. Binaries that use shared MPI libraries may not require rebuilding

User Support

Fermilab points of contact:

- Don Holmgren, <u>djholm@fnal.gov</u>
- Amitoj Singh, <u>amitoj@fnal.gov</u>
- Sharan Kalwani, sharan@fnal.gov
- Alexei Strelchenko, astrel@fnal.gov (GPUs)
- Alex Kulyavtsev, <u>aik@fnal.gov</u> (Tape and Lustre)
- Yujun Wu, <u>yujun@fnal.gov</u> (Globus Online)
- Jim Simone, <u>simone@fnal.gov</u>
- Ken Schumacher, <u>kschu@fnal.gov</u>
- Rick van Conant, <u>vanconant@fnal.gov</u>
- Paul Mackenzie, <u>mackenzie@fnal.gov</u>
- Please use <u>lqcd-admin@fnal.gov</u> for requests and problems

Questions?