

US Lattice Quantum Chromodynamics

Nuclear Physics in USQCD

Martin J. Savage University of Washington FermiLab, May 2012

- Spectroscopy
- Nucleon Structure
- Nuclear Interactions

- NSAC Milestones
- Different mass scales in NP c/w HEP
 - different production constraints precision in baryon correlators is crucial
 - different lattices volumes, aniso ?, lattice spacing, pion masses
 - different workflows
 - "measurements" dominate production costs

NP Experimental Program

- JLab
- Spectroscopy
- Nucleon structure
- 12 GeV upgrade (future)
- Hall D exotic spectroscopy

- Heavy-ion collisions
- RHIC, LHC
- exotic nuclei

- FRIB, FAIR (future)
- neutron rich nuclei
- refine nuclear forces

Spectroscopy

NSAC says:

Hadron states described with QCD over wide ranges of distance and energy; see
Milestones HP5, HP6, HP7, HP10. No Milestone is yet past nor is any yet complete. HP6
was rated as 'exceeding' with the other three rated 'achieved'.

2010 HP5	Characterize high-momentum components induced by correlations in the few-body nuclear wave functions via $(e,e'N)$ and $(e,e'NN)$ knock-out processes in nuclei and compare free proton and bound proton properties via measurement of polarization transfer in the ${}^4He(\vec{e},e\vec{p})$ reaction.	No	Expect to Achieve		
2011 HP6	Measure the lowest moments of the unpolarized nucleon structure functions (both longitudinal and transverse) to 4 GeV^2 for the proton, and the neutron, and the deep inelastic scattering polarized structure functions $g_1(x,Q^2)$ and $g_2(x,Q^2)$ for $x=0.2$ -0.6, and $1 < Q^2 < 5 \text{ GeV}^2$ for both protons and neutrons.	No	Expect to Exceed		
2012 HP7	Measure the electromagnetic excitations of low-lying baryon states (<2 GeV) and their transition form factors over the range $Q^2 = 0.1 - 7$ GeV ² and measure the electro- and photo-production of final states with one and two pseudoscalar mesons.	No	Expect to Achieve	nhva co se	
2014 HP10	Carry out ab initio microscopic studies of the structure and dynamics of light nuclei based on two-nucleon and many-nucleon forces and lattice QCD calculations of hadron interaction mechanisms relevant to the origin of the nucleon-nucleon interaction.	No	Expect to Achieve	αέπε	
2018	HP15 The first results on the search for exotic mesons using photon beams will be completed.				
Friday, May 4, 2012					

Jefferson Lab χ QCD Collaboration

Spectroscopy

- Establish the ground and excited states of single hadrons
- Resolve multiple, rapidly decaying states
 - fine lattice spacing in time direction
 - extensive source constructions
- Excited states in lattice volume are scattering states
 - need multiple volumes, boosted CoM to map out phase-shifts to extract poles and widths
 - becomes more extensive at lighter quark masses

Spectroscopy

- DeTar et al : Quarkonium Physics in Full QCD
 - 1.9 M ANL/reg + 2.5 M ANL/zero
 - charmonium spectroscopy HISQ
- Edwards et al: Dynamical Anisotropic Clover Lattice Production
 - 22.5 M (ORNL) + 0.050 M (B)
 - configuration generation clover, one lattice spacing
- Liu et al: Nucleon Form Factors and Hadron Spectroscopy
 - 28.9 M (FNAL)
 - N formfactors, spectroscopy, q+g L+J, sbars overlap/DW
- Richards et al: Excited Meson and Baryon States using Anisotropic Clover Lattices
 - 39.6 M JLab + 2.67 M GPU
 - spectroscopy clover

Nucleon Structure

2014 HP9	Perform lattice calculations in full QCD of nucleon form factors, low moments of nucleon structure functions and low moments of generalized parton distributions including flavor and spin dependence.	No	Expect to Exceed
2014 HP10	Carry out ab initio microscopic studies of the structure and dynamics of light nuclei based on two-nucleon and many-nucleon forces and lattice QCD calculations of hadron interaction mechanisms relevant to the origin of the nucleon-nucleon interaction.	No	Expect to Achieve

χ QCD Collaboration

- Matrix elements in the nucleon and octet baryons
 - Currently confusing presently not extrapolating reliably to reproduce nature
 - Systematics from excited states likely underestimated
 - high statistics studies are required
- Form factors
- What are current lattice values for each? Phenomenology?
 - how many calculations of <N| sbar s|N> are needed?
 - how much improvement will be provided by any given calculation? (needs to be in proposals)

Nucleon Structure

- Edwards et al: Dynamical Anisotropic Clover Lattice Production
 - 22.5 M (ORNL) + 0.050 M (B)
 - configuration generation clover
- Liu et al: Nucleon Form Factors and Hadron Spectroscopy
 - 28.9 M (FNAL)
 - N formfactors, spectroscopy, q+g L+J, sbars overlap/DW
- Negele et al: Precision Calculations to Extract Nucleon Ground State Structure in the Chiral Regime
 - 41.8 M (FNAL) + 1.641 M (GPU)
 - Nucleon ME's with isotropic clover, N-pi srcs, disconnected's
- Orginos et al : Isotropic Clover Fermions
 - 32.5 M (FNAL + ANL/zero)
 - isotropic clover lattice generation

Nucleon Structure

- Alexandru et al : Sea quark effects in hadron electric polarizability
 - 0.093 (GPU)
 - reweighting sea quarks with electric charges, nf=2 isotropic clover.
- Engelhardt : Electric spin polarizability of the neutron
 - 2.45 M (FNAL), quenched
- Engelhardt et al: Nucleon TMD PDF's with DW fermions on fine lattices
 - 2.42 M (JLab)
- Osborn et al: Disconnected contributions to Nucleon form factors with chiral fermions
 - 0.090 M (GPU)
- Renner et al: Step-scaling methods for operator mixing
 - 2.16 M (Cluster), extraction of higher moments of PDF's?

Nuclear Interactions

NSAC says:

 The nucleon-nucleon interaction mechanisms determined from QCD; see Milestones HP3, HP7, HP9, HP10. No Milestone is yet past nor is any yet complete. HP9 was rated 'exceeding' and HP7 and HP10 were rated as 'achieved'.

2009 HP3	Complete the combined analysis of available data on single π , η , and K photo-production of nucleon resonances and incorporate the analysis of two-pion final states into the coupled-channel analysis of resonances.	No	Expect to Not Achieve Fully
2012 HP7	Measure the electromagnetic excitations of low-lying baryon states (<2 GeV) and their transition form factors over the range $Q^2 = 0.1 - 7$ GeV ² and measure the electro- and photo-production of final states with one and two pseudoscalar mesons.	No	Expect to Achieve
2014 HP9	Perform lattice calculations in full QCD of nucleon form factors, low moments of nucleon structure functions and low moments of generalized parton distributions including flavor and spin dependence.	No	Expect to Exceed
2014 HP10	Carry out ab initio microscopic studies of the structure and dynamics of light nuclei based on two-nucleon and many-nucleon forces and lattice QCD calculations of hadron interaction mechanisms relevant to the origin of the nucleon-nucleon interaction.	No	Expect to Achieve

Nuclear Interactions

Scattering parameters and phase-shifts

- pi+pi+ s-wave and first d-wave (2011)
- multiple states in lattice volume
- crucial to resonance program
- multi-baryons near non-trivial fixed-point at physical parameters unitarity, scale-invariance

Bound States

- H-dibaryon, Xi0Xi0, with pion masses ~ 400 MeV, anisotropic clover
- less binding at lighter pion mass difficult to extract

• Frontier is multi-hadron systems and precision mesonmeson phase-shifts (disconnecteds?)

Nuclear Interactions

- Detmold et al : Lattice QCD study of Multi-Baryon Systems
 - 51 M (Cluster) + 0.8 M (GPU) + 0.050 (BG/Q)
 - •Isotropic Clover, SU(3) symmetric point, A < 7
- Orginos et al : Isotropic Clover Fermions
 - 32.5 M (FNAL + ANL/zero)
 - isotropic clover lattice generation
- Richards et al: Excited Meson and Baryon States using Anisotropic Clover Lattices
 - 39.6 M JLab + 2.67 M GPU
 - spectroscopy clover

- Good proposals focused on the NP mission
- Systematics need to be re-assessed for some quantities
- Isotropic and anisotropic cfg's are both required at present
- Measurements dominate resource requirements
- USQCD averaged numbers are required for some quantities, e.g. <N| sbar s |N>

USQCD

End

Matrix elements in the nucleon and octet baryons

- Currently confusing presently not extrapolating reliably to reproduce nature
- Systematics from excited states likely underestimated
- high statistics studies are required

Capitani et al , 1205.0180 hep-lat

Figure 4: Results for g_A at the physical pion mass for the plateau and summation methods. Solid points refer to a pion mass cut at $m_{\pi} < 540 \,\mathrm{MeV}$, while open symbols are used to denote results from fits across the entire pion mass range. Fits A, B and D were applied to the volume-corrected data (see text). The vertical lines represent the experimental value.