Kaon physics on the lattice* Steve Sharpe (UW)

Lattice QCD Meets Experiment Workshop 2010 Fermilab, April 27, 2010

*Plus strange and charm quark masses *Minus K-> $\pi\pi$, so "gold-plated" only

Outline

Status and future prospects for lattice calculations of:

- Decay constants: f_K, f_K/f_π, (& f_π)
- * $K \rightarrow \pi lv$ form factors
- ✤ B_K (and related matrix elements)
- ms and mc

How reliable are the results, what are the dominant errors, and by how much can they be reduced over the next 1-5 years?

Recent Reviews

P. Boyle, Kaon o9, "Lattice Kaon Physics," arXiv:0911.4317

[LLV] = J. Laiho, E. Lunghi, R. Van de Water, "Lattice QCD inputs to the CKM unitarity triangle analysis," PRD81, 034503 (2010), arXiv:0910.2928

• Contains averages of 2+1 flavor lattice results

V. Lubicz, Lato9 review, "Kaon Physics from lattice QCD," arXiv:1004.3473

• Contains FLAG (Flavianet Lattice Averaging Group) averages (in preparation)

C. Sachrajda, Chiral dynamics 09, "Kaons on the lattice," arXiv:0911.1560

E. Scholz, Lato9 review, "Light Hadron Masses and Decay Constants," arXiv: 0911.219

R. Van de Water, Lato9 review, "The CKM matrix and flavor physics from lattice QCD," arXiv:0911.3127

Collaborations & fermions

ALV = Aubin, Laiho & Van de Water: Domain wall valence on staggered (MILC) sea

BMW = Budapest, Marseille, Wuppertal = Durr et al: Improved Wilson fermions

ETMC = European Twisted-mass Collab: Further improved Wilson fermions

HPQCD = High precision lattice QCD = Davies et al: Highly improved staggered valence on staggered (MILC) sea

MILC (= MIMD lattice collaboration) = Bernard et al: Improved/Highly improved staggered fermions

PACS-CS = Tsukuba-centered collab.: Improved Wilson fermions

RBC/UKQCD = Riken, Brookhaven, Columbia / UK lattice QCD: Domain wall fermions (DWF)

Vecay constants

$f_{K} \& f_{K}/f_{\pi} \Rightarrow V_{us} \text{ or } V_{us}/V_{ud}$

$f_{\pi} \Rightarrow V_{ud}$ or lattice spacing

f_K/f_π : FLAG coding scheme

[Lubicz]				chiral station	finite v apolatio	contine error	f_{K}/f_{π}
Collaboration	Ref.	N_f	Public	chiral.	finite	Contin	f_K/f_π
ALVdW 09	[30]	2+1	С	•	•	•	1.192(12)(16)
BMW 09	[31, 32]	2+1	Р	*	*	*	1.192(7)(6)
RBC/UKQCD 09	[33]	2+1	С	٠	*	٠	1.225(12)(14)
MILC 09b	[34]	2+1	A	*	*	*	$1.198(2)(^{+6}_{-8})$
MILC 09a	[35]	2+1	A	\star	*	*	$1.197(3)(^{+6}_{-13})$
JLQCD/TWQCD 09	[36]	2+1	С	٠			1.210(12) _{stat}
PACS-CS 08	[37]	2+1	A	\star			1.189(20)
HPQCD/UKQCD 07	[38]	2+1	A	*	•	*	1.189(2)(7)
RBC/UKQCD 08	[20]	2+1	A	٠	*		1.205(18)(62)
NPLQCD 06	[39]	2+1	A	٠			$1.218(2)(^{+11}_{-24})$
MILC 04	[40]	2+1	Α	*	•	•	1.210(4)(13)
ETMC 09	[41]	2	Α	•	•	*	1.210(6)(15)(9)
ETMC 07	[42]	2	A	٠	٠		1.227(9)(24)
QCDSF/UKQCD 07	[43]	2	С	•	*	•	1.21(3)

	f_{K}/f_{π}	FL	A	G	C	0	d	ing s	cheme
	[Lubicz]				tion status	finite vertapolation	olume error	f_K/f_π	
	Collaboration	Ref.	N_f	Public	chiral,	finite v	Contin	γ f _K /fπ	
r	ALVdW 09	[30]	2+1	С	٠	٠	٠	1.192(12)(16)	
	BMW 09	[31, 32]	2+1	Р	*	*	*	1.192(7)(6)	
	RBC/UKQCD 09	[33]	2+1	С	•	*	•	1.225(12)(14)	
	MILC 09b	[34]	2+1	A	*	*	*	1.198(2)(+6)	
L	MILC 09a	[35]	2+1	A	*	*	*	$1.197(3)(^{+6}_{-13})$	
	JLQCD/TWQCD 09	[36]	2+1	С	٠			1.210(12) _{stat}	
	PACS-CS 08	[37]	2+1	A	*			1.189(20)	Included
C	HPQCD/UKQCD 07	[38]	2+1	A	*	٠	*	1.189(2)(7)	in average
	RBC/UKQCD 08	[20]	2+1	A	٠	*		1.205(18)(62)	in average
	NPLQCD 06	[39]	2+1	A	٠			$1.218(2)(^{+11}_{-24})$	
	MILC 04	[40]	2+1	Α	*	•	٠	1.210(4)(13)	5/
C	ETMC 09	[41]	2	Α	•	•	*	1.210(6)(15)(9))*
	ETMC 07	[42]	2	А	٠	٠		1.227(9)(24)	
	QCDSF/UKQCD 07	[43]	2	С	•	*	•	1.21(3)	

Status of f_K/f_π

from BMW 09

Good agreement! Reliable calculation! Lattice average: $f_{\kappa}/f_{\pi}=1.196(1)(10)$ [Lubicz]

8

Comparison with SM

Lattice average:

f_K/f_π=1.196(1)(10) [Lubicz]

First row unitarity+ $K_{l_3}+K_{l_2}/\pi_{l_2}+V_{ud}$ $\Rightarrow f_K/f_{\pi}=1.1925(56)$ [FLAG]

Consistent at 1% precision!

Can lattice calculations reduce errors towards few per mil?

Statistical errors of 2 per mil already attained[MILC, HPQCD]

Stumbling block is systematic errors

[BMW09]

Source of systematic error	error on F_K/F_{π}
Chiral Extrapolation:	
- Functional form	3.3×10^{-3}
- Pion mass range	3.0×10^{-3}
Continuum extrapolation	3.3×10^{-3}
Excited states	1.9×10^{-3}
Scale setting	1.0×10^{-3}
Finite volume	6.2×10^{-4}

To reduce dominant systematics: • $m_{\pi} \rightarrow physical value (error removed)$ • $a \rightarrow a/f$ (error reduced by~f², cost~f⁶) Possible on 2-5 year timescale (need PFlops-yrs) At some level, will run into other systematics, e.g. EM effects (under study in some quantities), and effects of (omitted) charmed sea

Status of $f_K \& f_{\pi}$

Normalized axial current ⇒ staggered results most accurate Important to have results with Wilson/DWF

11

Error budgets & prospects

[HPQCD, arXiv: -0706.1726]

	f_K/f_π	f_{K}	f_{π}	
r_1 uncerty.	0.3	1.1	1.4	
a^2 extrap.	0.2	0.2	0.2	
Finite vol.	0.4	0.4	0.8	
$m_{u/d}$ extrap.	0.2	0.3	0.4	
Stat. errors	0.2	0.4	0.5	
<i>m_s</i> evoln.	0.1	0.1	0.1	
m_d , QED, etc.	0.0	0.0	0.0	
Total %	0.6	1.3	1.7	

Dominant error is scale uncertainty

- Expect gradual improvement, with < 1% errors in few years
- \bullet f_{π} may be used to set the scale in future

$K \rightarrow \pi form factors$

$f_+(o) \Rightarrow V_{us}$

14

Euclidean time \rightarrow

f₊(o):FLAG coding scheme

[Lubicz]				' uon status	Vol allo	Jun error	$f_{+}(0)$
Collaboration	Ref.	N_f	Iqnd	chira	finite	Conti	$f_{+}(0)$
RBC/UKQCD 07	[9]	2+1	A	•	*		0.9644(33)(34)(14)
ETMC 09	[10]	2	A	•	•	•	0.9560(57)(62)
QCDSF 07	[11]	2	С		*		0.9647(15)stat
RBC 06	[12]	2	A		*		0.968(9)(6)
JLQCD 05	[13]	2	С	•	*	•	0.967(6)
SPQ _{CD} R 04	[8]	0	A		*		0.960(5)(7)

No calculation with all errors fully controlled

• Few calculations compared to $f_K \mbox{ \& } f_\pi$

f₊(o):FLAG coding scheme

	[Lubicz]			Publicas.	1 and a statue	finite Vor	nume error	$f_{+}(0)$	
	Collaboration	Ref.	N_f	Iqnd	chira	finite	CONT.	$f_{+}(0)$	
ſ	RBC/UKQCD 07	[9]	2+1	A	•	*	•	0.9644(33)(34)(14)	
	ETMC 09	[10]	2	A	•	•	•	0.9560(57)(62)	
	QCDSF 07	[11]	2	С		*		0.9647(15) _{stat}	
	RBC 06	[12]	2	Α		*		0.968(9)(6)	Included
	JLQCD 05	[13]	2	С	•	*	•	0.967(6)	in average
	SPQ _{CD} R 04	[8]	0	A	•	*	•	0.960(5)(7)	

No calculation with all errors fully controlled

• Few calculations compared to $f_K \mbox{ \& } f_\pi$

f₊(o):FLAG coding scheme

[Lubicz]			Publica.	ution statue	finite Vor	Continue errors	$f_{+}(0)$	$0 = 0.9599(34)(^{+31}_{-43})(14)$.
Collaboration	Ref.	N_f	public	chiral	linite	Contin	$f_{+}(0)$	[RBC/UKQCD 09]
RBC/UKQCD 07	[9]	2+1	A	•	*		0.9644(33)(34)(14)	
ETMC 09	[10]	2	A	•	•	•	0.9560(57)(62)	
QCDSF 07	[11]	2	С		*		0.9647(15) _{stat}	
RBC 06	[12]	2	Α		*		0.968(9)(6)	Included
JLQCD 05	[13]	2	С	•	*	•	0.967(6)	_ in average
SPQ _{CD} R 04	[8]	0	A	•	*	•	0.960(5)(7)	

No calculation with all errors fully controlled

• Few calculations compared to $f_K \mbox{ \& } f_\pi$

State of the art for f₊(o)

f₊(0)=0.960(3)(4)(1) [RBC/UKQCD09, arXiv:1004.0886]

Status of f₊(o)

Lattice average: $f_+(0)=0.962(3)(4)$ [Lubicz] 2+1 flavor result: $f_+(0)=0.960(3)(4)(1)$ [RBC/UKQCD09] SM+expt+V_{ud}: $f_+(0)=0.9608(46)$ [FLAG]

f₊(0)=0.960(3)(4)(1) [RBC/UKQCD09]

(statistics)(chiral extrap)(continuum extrap)

Future prospects f₊(0)=0.960(3)(4)(1) [RBC/UKQCD09]

(statistics)(chiral extrap)(continuum extrap)

Future prospects f+(0)=0.960(3)(4)(1) [RBC/UKQCD09]

(statistics)(chiral extrap)(continuum extrap)

To reduce dominant systematics:

• $m_{\pi} \rightarrow physical value (error removed)$

• $a \rightarrow a/f$

Possible on 2-5 year timescale (need PFlops-yrs) On same timescale, will have results with other fermions (Wilson, staggered?)

B_k land related matrix elements)

Calculating B_K

Calculating B_K

Known local four-fermion operator

New feature: need to match operator to continuum scheme

B_K:FLAG coding scheme

[Lubicz]			Publica.	un status	Chiral estimation	finite volt adion	renorman: errors	10 High	0	
Collaboration	Ref.	N_f	public	Contri	chiral	finite	renor	Tunin.	$B_{\mathrm{K}}^{\overline{\mathrm{MS}}}(2\mathrm{GeV})$	\hat{B}_{K}
ALVdW 09	[49]	2+1	A	•	*	•	*	•	0.527(6)(20)	0.724(8)(28)
RBC/UKQCD 09	[50]	2+1	С	•	•	*	*	•	0.537(6)(18)	0.738(8)(25)
SBW 09	[51]-[54]	2+1	С	*	*			•	0.512(14)(34)	0.701(19)(47)
RBC/UKQCD 07	[55,20]	2+1	Α		•	*	*	•	0.524(10)(28)	0.720(13)(37)
HPQCD/UKQCD 06	[56]	2+1	Α		٠	*		٠	0.618(18)(135)	0.83(18)
ETMC 09	[57]	2	С	*	•	•	*	•	0.518(21)(21)	0.730(30)(30)
JLQCD 08	[58]	2	Α		•		*	•	0.537(4)(40)	0.758(6)(71)
RBC 04	[59]	2	A			Ť	*	٠	0.495(18)	0.699(25)
UKQCD 04	[60]	2	Α			ţ		٠	0.49(13)	0.69(18)

Two calculations with all errors fully controlled
Several more in near future with different fermions

B_K:FLAG coding scheme

[[Lubicz]				Continues Status	wh ethapor	fuire volution	renormes.	ulzation to	2		
=	Collaboration	Ref.	N_f	Public	Contin	chiral	finite,	renort	Iuning.	$B_{\mathrm{K}}^{\overline{\mathrm{MS}}}(2\mathrm{GeV})$	₿ _K	
ſ	ALVdW 09	[49]	2+1	A	٠	*	٠	*	٠	0.527(6)(20)	0.724(8)(28)	
l	RBC/UKQCD 09	[50]	2+1	С	•	٠	*	*	•	0.537(6)(18)	0.738(8)(25)	
	SBW 09	[51]-[54]	2+1	С	*	*			٠	0.512(14)(34)	0.701(19)(47)	
	RBC/UKQCD 07	[55, 20]	2+1	A		•	*	*	•	0.524(10)(28)	0.720(13)(37)	
	HPQCD/UKQCD 06	[56]	2+1	A	•	•	*	•	•	0.618(18)(135)	0.83(18)	Included
ĺ	ETMC 09	[57]	2	С	*	•	•	*	•	0.518(21)(21)	0.730(30)(30)	in Lubicz
	JLQCD 08	[58]	2	A		٠		*	٠	0.537(4)(40)	0.758(6)(71)	average
	RBC 04	[59]	2	A			†	*	•	0.495(18)	0.699(25)	
	UKQCD 04	[60]	2	А			†		٠	0.49(13)	0.69(18)	

Two calculations with all errors fully controlled
Several more in near future with different fermions

B_K:FLAG coding scheme

	[Lubicz]				Continues Status	h extrapor	fuire vol.	renormal: erors	eation and a second			Included in LLV
=	Collaboration	Ref.	N _f	Publicar.	Continue.	chiral e	finite Vol	renormalise erre	Tuning.	$B_{\mathbf{K}}^{\overline{\mathbf{MS}}}(2 \text{ GeV})$	₿ _K	average
(ALVdW 09	[49]	2+1	А	•	*	•	*	•	0.527(6)(20)	0.724(8)(28)	
	RBC/UKQCD 09	[50]	2+1	С	٠	٠	*	*	٠	0.537(6)(18)	0.738(8)(25)	
	SBW 09	[51]-[54]	2+1	С	*	*			•	0.512(14)(34)	0.701(19)(47)	
$\left(\right)$	RBC/UKQCD 07	[55, 20]	2+1	A		٠	*	*	٠	0.524(10)(28)	0.720(13)(37)	
l	HPQCD/UKQCD 06	[56]	2+1	A		•	*		•	0.618(18)(135)	0.83(18)	
-												-
	ETMC 09	[57]	2	С	*	•	•	*	•	0.518(21)(21)	0.730(30)(30)	
	JLQCD 08	[58]	2	A		•		*	٠	0.537(4)(40)	0.758(6)(71)	
	RBC 04	[59]	2	A			†	*	٠	0.495(18)	0.699(25)	
	UKQCD 04	[60]	2	A			†		٠	0.49(13)	0.69(18)	

Two calculations with all errors fully controlled
Several more in near future with different fermions

Status of B_K

B_Kvs. SM

Lattice averages: $B_{K} = 0.725(27)$ [LLV] $B_{K} = 0.731(7)(35)$ [Lubicz]

Unitarity triangle fit: [LLV]

	1.09 ± 0.12	$ V_{cb} _{excl}$
$(\hat{B}_K)_{\text{fit}} = -$	0.903 ± 0.086	$ V_{cb} _{incl}$
	0.98 ± 0.10	$ V_{cb} _{excl+incl}$

2-3σ tension

Errors dominated by those in V_{cb} , not those in B_{K} !

Nevertheless, worth reducing errors to 1% level

Prospects for B_K

uncertainty	Z_{B_K}
statistics	0.7%
chiral extrapolation fit function	1.2%
strange quark mass dependence	0.3%
chiral symmetry breaking	1.2%
perturbation theory	2.8%
total	3.4%

Dominant error is matching factor

[ALV09]

 Expect some improvement by use of finer lattices, higher order continuum PT
 Attaining 1% will be challenging
 Calculations will be extended in 1-2 years to fourfermion operators needed to constrain BSM
 physics, with 5-10% accuracy

Euclidean time ->

Results for m_c

Relatively easy to obtain m_c^{lat} using improved fermions HARDER to match to continuum m_c

Recent advance: matching using short distance correlators:

 $m_c(m_c)=1.268(9)$ GeV [HPQCD⁺ 08(imp. stagg)] $m_c(m_c)=1.273(6)$ GeV [HPQCD 10(imp. stagg)]

Agrees remarkably well with determination from e^+e^- data: $m_c(m_c)=1.268(12)$ GeV [Kuhn et al, 07]

Important to check using other fermion discretizations, and including the charmed sea quark, which will take several years

Results for ms

Again, matching is dominant source of error Reasonable agreement if use non-perturbative or 2-loop matching to continuum

m_s, MSbar(2 GeV) mud, MSbar(2 GeV) [Scholz] HPQCD prelim. RBC-UKQCD -Ж. prelim. Aubin et al. prelim. MILC HH prelim. $N_{f}=2+1$ H PACS-CS ÷··-+··--; ¦₩¦ '₩¦ JLQCD prelim. **ж** JLQCD QCDSF ⊢Ж ∣ : ж : non-pert. ren. ETMC pert. ren. ж prelim. total error N,=2 stat. error 3.0 4.0 5.0 MeV 80 90 110 2.0 100 120

Results for ms

Again, matching is dominant source of error Reasonable agreement if use non-perturbative or 2-loop matching to continuum

Recent advance: measure m_s/m_c by using same fermions for both, and multiply by accurate m_c

Result for ms

 $m_s(\overline{\mathrm{MS}}, 2 \text{ GeV}) = 92.4(1.5) \,\mathrm{MeV}$ [HPQCD 09]

 $m_s(\overline{\mathrm{MS}}, 2 \text{ GeV}) = 92.2(1.3) \,\mathrm{MeV}$ [HPQCD 10]

Important to check using other fermion discretizations, which will take several years

Very recent result for mb $m_b(m_b) = 4.164(23) \, \text{GeV}$ [HPQCD 10, arXiv1004.4285]

Using same method as for m_c , but extrapolating to m_b . Cross checked by independent result for m_c/m_b In very good agreement with continuum result:

 $m_b(m_b) = 4.163(16) \,\mathrm{GeV}$ [Chetrykin et al, o9]

Summary

- Several precise and reliable results!
- Errors will be further reduced by simulations with physical quark masses (including charm)
- Important to have results with multiple discretizations of fermions

References

[ALV09] C. Aubin et al., "The neutral kaon mixing parameter B_k from unquenced mixed-action lattice QCD," PRD 81, 014507 (2010), arXiv:0905.3947

[BMW10] S. Durr et al.,"The ratio f_K/f_π in QCD,", arXiv:1001:4692

[HPQCD07] E. Follana et al., "High-Precision determination of the π , K, D and D_s decay constants from lattice QCD.," PRL100, 062002(2008), arXiv:0706.1726

[HPQCD⁺08] I. Allison et al., "High-Precision Charm-Quark Mass....," PRD 78, 054513 (2008), arXiv:0807.2999

[HPQCD09] C. Davies et al., "Precise charm, strange and light quark masses and mass ratios from full lattice QCD," PRL104, 132003 (2010), arXiv:0910.3102

[RBC/UKQCD09] C. Kelly et al., "Continuum results for light hadrons from 2+1 flavor DWF ensembles," arXiv:0911.1309

[RBC/UKQCD10] P.A. Boyle et al., " $K \rightarrow \pi$ form factors with reduced model dependence," arXiv:1004.0886