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Abstract

Over the next decade high performance computing resources will reach the petaflops scale.
Coupled with current and planned experiments at RHIC, FAIR,and the LHC, these computa-
tional resources will offer significant opportunities for the advancement of our understanding
of the properties of strongly interacting matter at high temperatures and densities. We describe
expected quantitative and qualitative gains in (1) our knowledge of the equation of state at zero
and nonzero density, (2) the phase diagram of QCD at zero and nonzero density, and (3) the
structure of the plasma phase, including excited states andtransport properties. We describe
several key computational projects for achieving these gains and estimate the computational
cost in units of teraflops-years (TF-y).

1 QCD at nonzero temperature and density

The properties of strongly interacting matter at nonzero temperature and baryon number den-
sity are being studied in heavy ion experiments at the Relativistic Heavy Ion Collider (RHIC) at
Brookhaven National Laboratory (BNL). In the near future these experiments will be extended to
even higher energies and temperatures at the Large Hadron Collider (LHC). By contrast, at BNL
and at the future European heavy ion facility FAIR, a series of new low energy experiments is
planned that will allow us to study such matter at moderate temperatures, but high baryon number
density. The former physical conditions occurred in the early universe; the latter may approximate
the environment in the interior of dense stellar objects such as neutron stars.

Under extreme conditions of high temperature or high baryonnumber density strongly inter-
acting matter is expected to have a rich phase structure as indicated in Figure 1. Quantifying
the drastic changes in the interaction among elementary particles that go along with such phase
changes requires large scale numerical calculations.

Numerical studies of lattice QCD can provide a wealth of new information about properties of
strongly interacting matter. Lattice QCD is likely to have aparticularly strong impact on current
and future experimental studies as well as the phenomenological modeling of hot and dense matter
in the following three areas:

• Lattice calculations can provide detailed information about basic bulk thermodynamic prop-
erties: the equation of state, energy and entropy density, the pressure, and the velocity of
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Figure 1: Phase diagram of strongly interacting matter

sound and basic structural properties: plasma modes and transport coefficients. These quan-
tities are crucial input to the analysis of many experimental observables that characterize
the formation of hot and dense matter in heavy ion collisions, and they are crucial for the
hydrodynamic modeling of its time evolution [1, 2]. For example a precise knowledge of the
equation of state is needed for a quantitative description of the expansion process and in the
theoretical modeling of almost all experimental observables, including the hydrodynamic
modeling of recent findings at RHIC, such as elliptic flow [3],viscosity [4] and quarkonium
suppression [5] .

• Lattice calculations currently provide the only ab initio,quantitative method for determining
the phase diagram of strongly interacting matter (Fig. 1), which, aside from the case of van-
ishing baryon number density (vanishing quark chemical potential), is largely unexplored.
In particular, confirming the existence of a second order phase transition point in the phase
diagram and subsequently determining its location accurately can only be achieved through
demanding numerical calculations. Experiments at RHIC andFAIR are under consideration
that would search for this critical point. Quantitative predictions from lattice calculations are
needed.

• Lattice simulations of strongly interacting matter are limited to thermodynamic equilibrium
and small deviations from it. Effective models help us develop insight and extend our un-
derstanding of the dynamical processes occurring in heavy ion collisions. Lattice calcula-
tions are essential for validating and constraining a variety of models ranging from hadronic
resonance gas models at low temperature and quasi-particlemodels at high temperature to
perturbative approaches at very high temperature [6].
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2 Quark-gluon plasma equation of state

Lattice methods for determining the equation of state (EoS)are well developed, but numerically
intensive. Our present knowledge of the continuum EoS comeswith statistical errors of order 15%
and probably comparable systematic errors. A combined error of order 5% at a physical light quark
mass would provide a solid foundation for hydrodynamical modeling. This goal is easily feasible
with petaflop resources.

The extrapolation of lattice results to the continuum requires carrying out calculations at a
series of small enough lattice spacingsa that the extrapolation is well controlled. For the EoS,
pushing to smaller lattice spacing is expensive but feasible. To compute the energy density, pres-
sure, and entropy requires a vacuum subtraction. That is, the simulation atT > 0 produces an
unrenormalized value of the thermodynamic quantity, and the physically useful value is obtained
by subtracting the corresponding zero temperature value. The procedure is straightforward, but the
subtraction entails a loss of significance that worsens rapidly as the lattice spacinga is reduced. In
fact, the fractional difference decreases asa4. Since the numerical simulation estimates the quanti-
ties in the subtraction statistically with an error proportional to 1/

√
N, the statistical sample sizeN

must grow asa−8 to achieve the same accuracy in the result. The cost of obtaining a single statis-
tically independent sample also grows with a high negative power ofa. With these considerations,
we estimate, conservatively, a net cost that scales asa−11. Clearly, we require a careful analysis of
discretization errors to make the most of simulation results at smalla.

We divide the temperature scale (in units of the crossover temperatureTc) into three qualita-
tively different regions, each with its distinct numericaldemands and impact on modeling.

- Low temperature region (T < 0.95Tc). Resonance gas models are often used to model
strongly interacting matter in this range [7]. A reliable lattice calculation is needed to vali-
date these models [8, 9].

- Transition region (0.95Tc < T < 1.5Tc). The crossover is strongly influenced by a nearby
phase transition that restores chiral symmetry. The plasmais strongly interacting and only
nonperturbative methods are applicable.

- High temperature region (1.5Tc < T). In this region one may hope to use resummed pertur-
bation theory to characterize the plasma, but its reliability is unknown.

Figure 2 shows results for the EoS based on recent calculations with improved staggered
fermions. On the left we show the difference of energy density and three times the pressure
[10, 11], which is sometimes called the interaction measure. It summarizes our current knowl-
edge of the EoS at low and high temperature at vanishing chemical potential. On the right we
compare the ratio of pressure (p) to energy density (ε) at zero baryon number and at nonzero
baryon number along curves of fixed entropy (S) per quark (or baryon) (NB = Nq/3) [12]. Here
the temperature is given in units of the crossover temperature T0. In the hydrodynamic modeling
of the expansion of dense matter created in a heavy ion collision, an accurate equation of state is
of particular importance.
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Figure 2: The equation of state of strongly interacting matter.

It is apparent from these figures that the qualitative features of the transition from the low to
high temperature regime of QCD are quite well characterized, but that much more detailed studies
are needed in all three temperature regimes to achieve control at the 5% level. Neither the approach
to the perturbative regime at high temperature nor the consistency with resonance gas physics at
low temperature is established on a quantitative level. Simulations with resources on the petaflop
scale could have a tremendous impact here.

In the following subsections we discuss a strategy to reach the goal of 5% accuracy in the
EoS at the physical light quark mass in each of the three temperature regimes listed above. In
each regime we set lattice parameters to cover approximately the same range of lattice sizes, so a
uniform extrapolation to the continuum will be possible.

Achieving this goal requires assessing and gaining controlof cutoff effects (artifacts of the
lattice approximation) as the lattice spacing is reduced. We discuss two popular ways to put quarks
(fermions) on the lattice, namely “staggered” fermions and“domain wall” fermions with different
sources of artifacts.

Staggered fermions suffer from a phenomenon called speciesdoubling. Uncorrected, the re-
sulting theory has four times as many quark species as desired. The standard expedient takes the
fourth root of the “fermion determinant”, which approximately corrects the multiplicity of quark
species in the statistical ensemble. This formulation alsodistorts the desired chiral symmetry of
the theory. The error in the approximation is widely believed to vanish in the continuum limit, but
there is no proof [13].

The domain wall formulation does not suffer from species doubling. In addition to the usual
lattice spacing, its lattice artifacts are controlled by a parameterLs, which determines the degree
to which the desired chiral symmetry is well approximated. The quality of that approximation is
measured by the “residual mass” of the lightest quark. The residual mass should be small, which
requires makingLs large and increases the computational cost.

For a given lattice spacing and set of physical parameters, ahigh quality domain wall simulation
is far more expensive than the corresponding staggered fermion simulation. Thus we currently
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have far more detailed results from staggered fermions, andthe largest part of the computations
we envision in this report are for staggered fermions. Nonetheless, well-chosen simulations with
domain-wall fermions are essential for checking results from staggered fermions, particularly for
quantities and phenomena sensitive to chiral symmetry.

In the subsections below we give estimates of the computational cost to achieve the desired
accuracy. The estimates are summarized in Table 1. A brief explanation of some of the simulation
parameters is in order. The simulation temperature is determined froma, the lattice spacing, and
Nτ, the extent of the lattice in the Euclidean time direction, according toT = 1/(Nτa). Thus at any
given temperature, the approach to the continuum requires alargerNτ.

2.1 Resonance gas regime: T < 0.95Tc

Contemporary simulations in the important hadronization temperature range of 150 - 200 MeV
have been done at best at a fairly coarse lattice spacing of about 0.15 fm [10, 14, 15]. Here signifi-
cant artifacts of the lattice formulation are likely to appear; their nature depends on the formulation.
With the most extensively studied staggered fermion formulation, the meson spectrum is plagued
by the increasing distortion of “taste multiplets”. When the hadron spectrum is inaccurate, one
may question its description of the hadronic medium for temperatures nearing the crossoverTc.

A simulation atNτ = 12 corresponds to a lattice spacinga of 0.09−0.12 fm in the temperature
range 140− 180 MeV. Measurements of the hadronic spectrum in this rangeshow the expected
scaling with decreasinga. Based on ongoing simulations atNτ = 8, we estimate a cost of 85
TF-y to carry out a comparable simulation atNτ = 12 for T < Tc. Such a simulation, combined
with existing and ongoing simulations, should make it possible to reduce the uncertainty in the
continuum extrapolation in this important region to 5%.

2.2 Transition temperature and thermodynamics in its vicinity: 0.95Tc <
T < 1.5Tc

This is the dramatic crossover region. The crossover is an echo of a nearby phase transition that
restores chiral symmetry. Since the equation of statep/ε has a minimum at or close to the transition
temperatureTc, the velocity of sound is small in this regime. The expandingand cooling dense
matter created in a heavy ion collision thus spends a long time in this temperature regime. A
determination of the transition temperature and the corresponding energy and entropy densities is
of great importance.

In Fig. 3 we show a collection of recent results for the transition temperature as function of the
light pseudo-scalar (pion) mass. Although there is good overall agreement the transition temper-
ature still is not not known to better than 10%. Reducing the error below 5% requires additional
calculations and the cross-check of results obtained with different fermion actions.
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Figure 3: The transition temperature in (2+1)-flavor QCD as compiled in [11] obtained with dif-
ferent staggered fermion actions (asqtad [16], p4fat3 [17], stout [18]) and results obtained in two-
flavor QCD with improved Wilson fermions (clover fermions) [19, 20]. Shown is the transition
temperature in terms of a scale parameter (r0) extracted from the slope of the static quark poten-
tial, versus the lightest pseudo-scalar meson mass, also expressed in units ofr0. Open symbols
correspond to results on lattices with temporal extentNτ = 4. Filled symbols correspond toNτ = 6
or larger.

A key question is whether the distortion of chiral symmetry at nonzero lattice spacing in the
staggered fermion formulation modifies the crossover temperature and the peak in chiral suscep-
tibility. To answer this question requires good control of the continuum limit in the staggered
fermion simulation and a companion calculation with chiraldomain wall fermions.

In this region it should suffice to carry out the staggered fermion simulation atNτ = 10. To-
gether with results from existing and ongoing calculationsat Nτ = 6 and 8, we should be able to
do a controlled extrapolation to the continuum. A calculation at five temperatures in this critical
region would cost 75 TF-y.

The domain wall formulation does not have the spectral lattice artifacts of staggered fermions.
However, it is far more computationally expensive. The quality of its chiral behavior is measured
by the “residual quark mass” parameter. AtNτ = 10 in the transition region, we know from other
tests that this quantity is small enough to assure good control of the chiral behavior. Our goal is to
check the determination of the crossover temperatureTc and the strength of the peak in the chiral
susceptibility. A calculation at seven temperatures in this critical region on a 483×10 lattice with
Ls = 32 at twice the physical light quark mass would be sufficient and would cost 100 TF-y.

2.3 Perturbation theory and the high temperature limit of QCD: 1.5Tc <
T < 5Tc

Heavy ion experiments at the LHC will generate matter with initial energy densities as high as
1 TeV/fm3, which may correspond to temperatures as high as(800−1000) MeV. Even at these high
temperatures, straightforward high-temperature perturbation theory is not sufficiently convergent
to give a quantitative prediction. Refined resummation techniques have been developed to deal
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with this problem. These techniques have been quite successful in the purely gluonic sector of
QCD but are poorly developed for QCD with dynamical quarks. To make progress here requires
accurate numerical results from lattice calculations.

In this temperature regime quark mass thresholds for the charm quarks become relevant. Pertur-
bative calculations suggest that the charm quark contribution to the EoS can be significant already
at temperatures of a few times the transition temperature [21]. In order to take into account the
contribution of heavy quarks some progress can be made in a quenched approximation to the heavy
quark sector. If one aims, however, at accuracies on the few percent level, a dynamical simulation
will be needed.

Although including heavy quarks in a dynamical simulation is relatively cheap, a fine lattice
is needed to resolve their contribution accurately. In order to incorporate the contribution of a
charm quark in a dynamical simulation, the inverse lattice spacing should be much larger than
the heavy quark massmc. This requires simulations on lattices with temporal extent Nτ = 10 or
evenNτ = 12. For example, on a lattice with temporal extentNτ = 10, the inverse lattice spacing
at T ≃ 2Tc ≃ 0.4 GeV isa−1 = 4 GeV. Simulations onNτ = 8 and 10 lattices should then allow
an analysis of cut-off effects systematically in dynamicalsimulations that also include the charm
quark sector.

To control the EoS at these high temperatures is computationally highly demanding. As is ob-
vious from the left panel of Fig. 2, the signal is an order of magnitude smaller here than close to the
transition region. Nonetheless, it is feasible to calculate the EoS on a lattice with temporal extent
Nτ = 10 at four temperatures in the range 2Tc ≤ T ≤ 4Tc to establish the temperature dependence
of (ε−3p). Combining such a calculation with results obtained on lattices with temporal extent
Nτ = 6 and 8 will permit a controlled extrapolation to the continuum limit, where systematic errors
will be below the 1% level. Overall errors will then be entirely controlled by the statistical error
that can be achieved. Based on the experience with current simulation parameters it is conceivable
that errors below 5% can be reached for(ε−3p). We estimate a cost of about 150 TF-y.

2.4 Equation of state at nonzero density

Heavy ion collisions occur in a baryon-rich environment, whereas lattice simulations are naturally
suited for zero baryon density,i.e. zero baryon chemical potential. For technical reasons direct
simulation at nonzero density and appropriately large lattice volume is extremely difficult. To
reach a small, nonzero baryon number density, one constructs the Taylor series expansion in the
chemical potential [22]. The coefficients of the series are evaluated in a standard simulation at
zero chemical potential. This method is effective for the relatively low baryon number densities of
heavy ion collisions. As more terms in the Taylor are calculated, it becomes possible to push to
higher chemical potential.

Upcoming low energy runs at RHIC will achieve higher baryon density. Our goal is to de-
termine the equation of state at the relevant densities to 5%accuracy in 2+ 1 flavor QCD. The
procedure for extending the equation of state to nonzero chemical potential by means of a Taylor
expansion is well developed [22, 23, 24]. Typically, one works directly with the pressure. How-

7



ever, to determine the EoS at fixed entropy per baryon, as it isneeded to describe the expanding
dense matter created in heavy ion collisions, one also has tocalculate Taylor expansion coefficients
for the energy and entropy densities. This requires good control over the temperature dependence
of the expansion coefficients for the pressure.

The state of the art of such calculations is given in Fig. 2(right). Coefficients of the Taylor ex-
pansion of the pressure are constructed from expectation values of products of quark loop operators
on the equilibrium, zero density ensemble. Current calculations have been carried to sixth order
for two light quark flavors. Algebraic expressions for the coefficients become rapidly complicated
at higher order. Fortunately, the coding at any high order can be automated.

The calculation reuses the lattices generated in the equation of state study. It involves a large set
of inversions of the fermion matrix with different random starting vectors. The number of random
vectors needed to reach comparable statistical error in different ordersN of the Taylor expansion
grows exponentially,i.e. roughly like 4N. Moreover, the computational effort per set of random
vectors increases approximately as 1.5N. The overall computational effort thus rises like 6N.

The main domain of interest here is the temperature regionT < Tc(µq = 0). This also is the
computationally most difficult region. Based on current studies on lattices with temporal extent
Nτ = 4 we estimate the resources needed to calculate the expansion up to 8th order with an accuracy
of 10% and add the effort required to reach 20% accuracy for the 10th order coefficient. The latter
would automatically imply that the 8th order coefficient is obtained with an accuracy of about 3%.
As errors of these coefficients are strongly correlated and the square root of ratios of subsequent
coefficients is needed to estimate the radius of convergenceof the Taylor series this suffices to get
estimates for the convergence radius with a statistical error of 10%.

A reasonable strategy would be to perform an analysis up to 8th order for four temperature
values belowTc(µq = 0), and add one 10th order calculation at the estimated chiral critical tem-
perature to this. The 8th order calculations would require about 150 TF-y and the single 10th
order calculation requires 340 TF-y. The latter would be four times more expensive, if one also
aims at a 10% error on the expansion coefficient,i.e. a 5% error on the estimate for the radius of
convergence and hence the location of the chiral critical point in the QCD phase diagram.

3 The phase diagram of strongly interacting matter

3.1 Phase boundary at zero baryon number density

It is now widely accepted that at physical quark masses and zero baryon density the transition
in QCD from hadronic matter to a quark plasma is a rapid, but analytic crossover, rather than a
phase transition. At other values of the quark masses and at nonzero baryon number density there
are phase boundaries as indicated in the left panel of Fig. 4.For example, in the scenario of this
figure, as the light quark mass is lowered toward the left fromthe physical point, a critical line is
encountered. On this line we get a genuine high temperature phase transition with critical behavior.
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Figure 4: Left panel: sketch of the expected phase boundaries at zero chemical potential as a
function of degenerate up and down quark masses. The physical point is plotted as a dot in the
crossover region. To the left and below the 2nd orderZ(2) boundary a high temperature first order
phase transition occurs. Right panel: result of an actual measurement of a portion of the 2nd order
Z(2) phase boundary from Ref. [25]. The axes give bare quark masses in lattice units and the blue
cross marks the physical point.

When a strange quark is present, that critical line may occurat a nonzero light quark mass. For
light quark masses below that line, the high temperature phase transition is first order.

This phase boundary has been mapped out by de Forcrand and Philipsen on rather coarse
lattices (Nτ = 4) with unimproved staggered fermions [25] as shown in the right panel of Fig. 4. It
is well known that lattice artifacts have a strong influence on the location of the phase boundary
[26, 27]. Thus it is important to push to smaller lattice spacing and explore more systematically
the influence of explicit chiral symmetry on the the transition parameters.

Clearly, what is needed is a systematic characterization ofthe phase boundary with improved
staggered fermions, proceeding fromNτ = 4 to Nτ = 6. This should be done at about ten different
sets of quark mass values(mud,ms), as in the unimproved example of Fig. 4. We estimate the cost
to be about 200 TF-y.

The sensitivity of these results to the chiral sector of QCD should be studied by repeating the
analysis at a few selected parameter sets(mud,ms) with a chiral fermion formulation of QCD,
namely the domain wall fermion method. Its high computational cost has prevented us from using
it to characterize the phase boundary. However, with petascale resources it will be possible to do
so. It will be feasible to carry out such simulations at leastfor three-degenerate-flavor QCD,i.e.
with ms = mud. To carry out such a simulation with all three quark masses equal to 1/20 of the
physical strange quark mass on a 483×10 lattice atLs = 32 would require 40 TF-y.
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3.2 Soft plasma modes at the transition

Soft (massless) modes in the theory play an important role atthe second order phase transitions.
They may even dominate the evolution of the plasma at these temperatures. These modes can be
studied at the same time we explore the phase boundary.

3.3 Phase boundary at nonzero baryon number density

At small, possibly even physical values of the strange quarkmass, the phase boundary occurs at
nonzero light quark mass as indicated by theZ(2) line in Fig. 4. What happens to this line as the
baryon number density is increased? Does it move toward the physical point or away from it?
These two scenarios are sketched in Fig. 5. In the scenario onthe left, as the chemical potential
is increased at fixed physical quark mass, a critical phase boundary is encountered, beyond which
the high temperature phase transition is first order.

Critical behavior would give rise to observable effects. A strongly first order phase transition
would have dramatic observable effects, including a phase separation and metastable states. Which
of the two scenarios in Fig. 5 is correct? A large experimental program at RHIC and a new heavy
ion facility in Europe (FAIR) will be devoted to this question. Giving firm answers to this question
through lattice calculations can have a tremendous impact on the final layout of these experiments.

A set of statistical quantities called “Binder cumulants” measure fluctuations at the transition
temperature and help to distinguish a crossover from a genuine phase transition. De Forcrand and
Philipsen have shown that simulations at imaginary chemical potential are helpful in determining
the curvature of the critical surface [25]. Introducing a nonzero imaginary chemical potential is
expensive. It requires generating a new set of gauge configurations for every simulation value of the
imaginary chemical potential. A Taylor expansion of the Binder cumulants is also effective. The
Taylor coefficients cost more to calculate. For each parameter set (mud,ms) at which this analysis
is to be performed, the computational effort discussed in the previous section would be doubled.
Even so, the net expense is far less, since it is not necessaryto generate a new ensemble of gauge
configurations. We simply reuse the ones discussed in the previous section. Doing this analysis for
only every second set (mud,ms) of quark masses should give a fair picture of the curvature of the
critical surface. This calculation will thus require about100 TF-y.

4 Structure of the QGP

4.1 In-medium properties of hadrons

Deconfinement implies the dissolution of hadrons into theirconstituents. Thus one would expect
that an experimental signal for deconfinement in heavy ion collisions is the disappearance of the
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charmonium and bottomonium peaks in dilepton production [28]. Lattice simulations and the anal-
ysis of experimental measurements suggest, however, that hadronic matter is strongly interacting
at temperatures well aboveTc. Consequently quarkonium production is suppressed to a degree that
depends on temperature [29, 30, 31].

A major puzzle from RHIC experiments is the large degree of collectivity, i.e. large flow. If
this happens because the system is thermalized to a good approximation, the degree of quarkonium
suppression should provide an estimate for the temperature. So far, relatively little is known about
quarkonium properties at nonzero temperature; therefore,lattice information is crucial. If the
system is locally thermalized, it should have a very low viscosity, i.e very small mean free path to
produce the observed flow. Furthermore, recent experimental results from RHIC on open charm
production indicate that even heavy quarks have a small meanfree path. Thus estimating the heavy
quark diffusion is also important.

Lattice simulations provide an indirect means for determining the thermal suppression of quarko-
nium production and for determining transport coefficients. The calculation involves measuring the
imaginary time correlation function of the appropriate heavy-quark currentJ(t,x,T) and deducing
from it the real-time spectral functionρ(ω, p,T). The choice of current (scalar, pseudoscalar, vec-
tor, etc.) determines the channel of interest. Dilepton rates are obtained from the electromagnetic
current correlator. The measured correlator has the general form

G(t, p,T) =

Z

d3xexp(ip ·x)〈J(t,x,T)J(0,0,T)〉. (1)

Deriving the spectral functions from measurements of the lattice correlators is difficult. The lattice
correlatorG(t, p,T) is known on a discrete set of imaginary time valuest, spatial momentap, and
temperatureT, whereas the unknown spectral functionρ(ω, p,T) has support, in principle, for all
real frequenciesω. The Euclidean correlator is related to the spectral function through

G(t, p,T) =
Z ∞

0

dω
2π

cosh[ω(t−1/2T)]

sinh(ω/2T)
ρ(ω, p,T). (2)
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Peaks at nonzero frequency inρ correspond to plasma excitations. In principle transport coeffi-
cients are obtained from widths of peaks inρ near zero frequencyω. For example, the light quark
vector current correlator measures the electric conductivity [32, 33], and the heavy quark vector
current correlator measures the heavy quark diffusion coefficient. For light quarks this method
is difficult in practice, since the transport contributionsare not easily separated from the reso-
nance contributions. For heavy quarks, however, the spectral separation is much easier and recent
promising attempts exploit this [34]. The heavy quark diffusion coefficient is indirectly related to
the shear viscosity.

To extract information aboutρ(ω, p,T) from lattice measurements, it is common to impose
additional constraints, either from model assumptions about the spectral function or from addi-
tional conditions, as in, for example, the popular maximum entropy method, which minimizes the
deviation of the predicted spectral function from a featureless reference model. Clearly, the more
imaginary time valuest at which the correlator is known and the more precisely the correlator
is known, the less one must depend on additional constraints. Experience in similar condensed
matter physics applications suggests that to obtain physically useful results requires several dozen
imaginary time values.

Recent lattice calculations for a pure gluon plasma suggestthat the charmonium signal persists
to 1.5Tc or higher [30, 31]. Figure 6 shows results of a recent calculation [31] including error bars.
These results were obtained on anisotropic lattices with upto 40 imaginary time values.
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Figure 6: Spectral function for theηc correlator from [31]. The error bars indicate the uncertainty
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There is clearly room for improvement. We need calculationswith of the order of 100 or more
points. For example, to carry out a quenched simulation on anisotropic 1283×Nτ lattices at seven
temperatures would cost 15 TF-y. A companion simulation on 483×Nτ lattices with both light and
strange quarks included in the ensemble would cost 100 TF-y.
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5 Conclusion

The advent of petaflops-scale computing promises dramatic gains in our understanding of the prop-
erties of strongly interacting matter at high temperaturesand densities. We have described a pro-
gram of lattice calculations that will (1) allow us to determine the equation of state of strongly
interacting matter to an accuracy of 5%, (2) locate the critical surface of the QCD phase diagram
at zero baryon density and predict its curvature as the baryon density is increased, (3) advance
our understanding of the structure of the quark-gluon plasma and (4) determine some key trans-
port coefficients. The first goal will provide essential, solid input for hydrodynamical modeling of
heavy ion collisions, the second and third could represent apotential breakthrough by moving us
from a qualitative to a quantitative understanding of the phase diagram and of the survivability of
hadrons at high temperature, and the fourth and most ambitious goal could very well give us the
first reliable lattice result for a transport coefficient of the quark-gluon plasma.

Acknowledgements: We thank Carleton DeTar, Frithjof Karsch and Robert Mawhinney for
their contributions to this paper.

Project lattice temps quark trajecs cost
masses (TF-y)

EoS:µ= 0, T < 0.95Tc 483×12 7 2 100,000 35
EoS:µ= 0, T < 0.95Tc 484 7 2 25,000 50
EoS:µ= 0, 0.95Tc < T < 1.05Tc 483×10 5 2 100,000 25
EoS:µ= 0, 0.95Tc < T < 1.05Tc 484 5 2 25,000 50
EoS:µ= 0, 2Tc < T < 4Tc 643×10 4 2 100,000 50
EoS:µ= 0, 2Tc < T < 4Tc 644 4 2 25,000 100
EoS DWF:µ= 0, 0.95Tc < T < 1.05Tc 483×10×32 4 1 50,000 100
EoS:µ> 0 T < 0.95Tc 8th order 323×8 4 1 50,000 150
EoS:µ> 0 T < 0.95Tc 10th order 323×8 1 1 50,000 340

phase boundary,µ= 0 323×6 4 10 10,000 200
phase boundary,µ= 0, DWF 483×10×32 4 4 10,000 40
phase boundaryµ> 0 323×6 4 4 10,000 100

spectral function, quenched 1283×Nτ 7 1 10,000 15
spectral function, dynamical 483×Nτ 7 1 10,000 100

Table 1: Summary of simulation parameters and cost estimates. Cost estimates are based on
current experience atNτ = 6 and 8. The computational effort is assumed to scale with decreasing
lattice spacing asa−11 with quark masses fixed in physical units. Simulations labeled µ = 0 are
at zero quark number density. Simulations labeledµ > 0 imply a Taylor expansion in chemical
potential to reach small nonzero densities. Temperature ranges are expressed in terms ofTc, the
relevant crossover temperature. The parameter “trajecs” measures the size of the statistical sample
needed. The lattice dimension for the domain wall fermion simulations (DWF) includes the “fifth
dimension”Ls parameter.
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