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Abstract
This document is one of a series of whitepapers from the USQCD collaboration. Here, we discuss

opportunities for lattice QCD in neutrino-oscillation physics, which inevitably entails nucleon and

nuclear structure. In addition to discussing pertinent lattice-QCD calculations of nucleon and

nuclear matrix elements, the interplay with models of nuclei is discussed. This program of lattice-

QCD calculations is relevant to current and upcoming neutrino experiments, becoming increasingly

important on the timescale of LBNF/DUNE and HyperK.
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EXECUTIVE SUMMARY

In 2018, the USQCD collaboration’s Executive Committee organized several subcommit-
tees to recognize future opportunities and formulate possible goals for lattice field theory
calculations in several physics areas. The conclusions of these studies, along with community
input, are presented in seven whitepapers [1–6]. This whitepaper covers the role of lattice
QCD in neutrino-nucleus scattering, motivated principally by neutrino oscillations.

Neutrino-nucleus scattering experiments provide an abundance of information on neutrino
masses and flavor mixing, on nucleon and nuclear structure, and on non-standard interactions
between neutrinos and ordinary matter. To interpret these experiments cleanly, the key
problem is to reconstruct the incident neutrino energy. The nuclear remnant is not, in these
experiments, detected. It is therefore impossible to reconstruct the neutrino energy without
modeling the nucleus in some way. This problem is complex, because it spans a range of
energies—from hundreds of keV to a few GeV—that probe all aspects of the target nucleus.

The presence of many energy scales implies that a variety of theoretical techniques must
work in concert. A convenient, organizational framework is nuclear many-body theory, which
takes nucleonic properties as inputs. In this whitepaper, we discuss how these nucleonic
properties can be obtained directly from the QCD Lagrangian using numerical simulations
of lattice gauge theory. Although lattice QCD cannot settle every question in neutrino-
nucleus scattering, it is reasonable to demand that our understanding of these processes be
consistent with QCD. In many cases, the most straightforward route to the needed QCD
knowledge is lattice QCD.

In this whitepaper, we discuss several calculations that should, as they mature, be in-
corporated into nuclear theory and neutrino event generators. A very important and very
feasible example is the axial form factor of the nucleon. Lattice QCD has a notable history of
calculating this and related observables, and calculations with full control of the systematic
uncertainties are now coming of age. Here, “full control of systematic uncertainties” implies
that a complete error budget is provided. The axial form factor is relatively straightfor-
ward: completely analogous calculations of vector form factors are possible with the same
(indeed, overlapping) computational effort. The vector form factors have been measured in
electron-proton and -neutron scattering, so an apt crosscheck is close at hand. Experience
from form factors in meson physics suggests a simple, model-independent way to transmit
the output of lattice QCD to event generators and, thus, analysis of experimental data.

Form factors of nucleons are only the beginning. Future oscillation experiments span
beam energies such that computationally more demanding information is required. Just
at the nucleon level, transition form factors to multibody final states are needed. For an
inclusive data set, the object of interest is the nuclear hadron tensor, which can be obtained
by combining the nucleonic hadron tensor from lattice QCD with a nuclear spectral function.
In the deep inelastic region, new ways of computing parton distribution functions in lattice
QCD are an exciting development. A further emerging component of lattice QCD consists
of calculations of the properties of small nuclei—up to 4He today and to 6Li with exascale
computing—can be used to test nuclear many-body theory and provide information via
chiral effective theories to pin down the nuclear physics.

Lattice-QCD calculations with nucleon and nuclei are more challenging than the corre-
sponding ones for mesons, because of unavoidable technical challenges that increase with
the number of quark lines. Consequently, to perform the requisite calculations, improve-
ments in methodology, algorithms, and software will be essential. Even assuming continuing
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ingenuity on those fronts, much of the work will require exascale computing resources. As
in the past, a combination of high-capability and high-capacity computing will be needed.
The former is needed for timely solution of mature problems, while the latter is necessary
for developing feasible techniques for the challenging calculations, before making the jump
to supercomputer centers.
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I. INTRODUCTION

Along with the first observation of the Higgs boson and the mounting evidence for dark
matter, the discovery that neutrinos change flavor is one of the major advances in parti-
cle physics over the past twenty-five years. The discovery hinged on studies of neutrinos
produced at the upper edge of the earth’s atmosphere [7] and also explained a deficit in elec-
tron neutrinos from the sun [8]. These findings prompted an accelerator-based experimental
program in Europe, Japan, and the United States, to make more accurate measurements
of, for example, the squared mass differences. The increase in precision and sensitivity ex-
pected in future experiments raises the question whether the theoretical description of the
relevant experiments must be further refined to exploit the new measurements to the fullest.
In particular, as future, ambitious, long-baseline neutrino-oscillation experiments such as
LBNF/DUNE [9] and HyperK [10] have come into focus, the quantification of uncertainties
from the hadronic and nuclear physics of the detectors have become increasingly relevant.
To this end, the lattice-QCD community has identified a set of feasible calculations that will
be of special relevance. This program is described in this whitepaper.

An important goal of the experimental neutrino-physics program is to test the three-
neutrino paradigm of the Standard Model. In this context, the Standard Model must be
extended to allow for lepton flavor change. The simplest choice consistent with the standard
gauge symmetries is to introduce a set of right-handed neutrino fields. Then lepton-flavor
mixing and neutrino masses arise in the same way as in the quark sector, namely through
Yukawa couplings to the Higgs field with a nonvanishing vacuum expectation value. To
couple to the Higgs and left-handed-lepton doublets, the right-handed neutrino fields have
to be gauge singlets. But then no symmetry principle forbids a mass term connecting
neutrinos to themselves (i.e., of the kind first noted by Majorana [11]), in contrast to the
Higgs-generated Dirac mass term, which connects neutrino to antineutrino. The lack of
direct evidence for right-handed neutrinos suggests that in this scenario the Majorana mass
M might be very large. If one supposes that the neutrino Yukawa couplings are not much
different from light quarks or charged leptons, the propagating neutrinos have mass close to
M and to mν ≈ y2v2/2M , where y is a Yukawa coupling and v is the vacuum expectation
value of the Higgs field. This mass hierarchy, known as the see-saw mechanism, provides
a possible explanation of the tiny size of neutrino masses [12]. For example, if M is a
grand-unified mass scale around 1015 GeV, then mν . 0.03 eV (for y . 1).

This theoretical framework means that the three-neutrino paradigm can be tested by
measuring the neutrino mass-squared differences and the mixing angles and CP violating
phases of the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix [13]. Like the
Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing matrix [14], the PMNS has three mixing
angles. If the Majorana mass term appears, the PMNS matrix has three CP -violating phases
instead of one as in the CKM matrix. The mixing angles and the CKM-like CP -violating
phase can be measured in oscillation experiments, while the extra phases and the Majorana
nature of neutrinos can be probed via the neutrinoless double-beta (0νββ) decay of certain
nuclei. For lattice-QCD calculations relevant to 0νββ, see the companion whitepaper “The
Role of Lattice QCD in Searches for Violations of Fundamental Symmetries and Signals for
New Physics” [3]; here, the focus is on lattice-QCD research that will impact the oscillation
experiments.

Oscillation experiments measure the energy spectrum of a neutrino beam after it has
travelled a certain baseline distance. Unfortunately, neutrino beams have a wide energy
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spectrum, as shown in Fig. 1, so the center-of-mass energy of a collision is not known. In
contrast, quark-flavor experiments, for which lattice QCD has been crucial, study decays
of strange, charmed, or b-flavored hadrons of precisely known mass. Here, the energy of
the incident neutrino must be inferred from measurements of the final state. The targets
in neutrino experiments are medium- to large-sized nuclei, such as 12C, 16O, or 40Ar, the
remnants of which are not, in practice, be detected. That means that the mapping between
final-state measurements and the initial energy inevitably requires theoretical knowledge of
the neutrino interaction with the struck nucleus.

Consistency with QCD is a clearly desirable characteristic of nuclear models used to
deduce the connection between final and initial states. Thus, it makes sense to incorporate
lattice QCD as soon as results with full, reliable error budgets are available. As discussed
in more detail in Ref. [16], the nuclear models rely in part on properties of the nucleon
as inputs. Many of these quantities can be calculated in lattice QCD in the near term,
with the precision depending on the quantity. Of course, single-nucleon calculations are
not in themselves enough. Calculations of the properties of multi-nucleon systems must be
developed concurrently and, once mature, also incorporated into the nuclear modeling.

The theory behind neutrino-nucleus collisions is complex because it spans a range of en-
ergies that probe all aspects of the target nucleus. Nuclear excitation energies are, typically,
dozens of keV, while the average binding energy is 8.6 MeV (in 40Ar), and the typical Fermi
motion of a nucleon is around 250 MeV. In the regime relevant to oscillation experiments,
the energy transfer to the nucleus ranges between ∼200 MeV and the neutrino energy itself,
although much of transferred energy is carried off by nucleons and pions, rather than the
nuclear remnant. Thus, it is a challenge to arrive at a comprehensive approach to the entire
problem. Most approaches start with nuclear many-body theories, in which the nucleus is
described by a nuclear wave function of a collection of interacting nucleons; see, for exam-
ple, Ref. [17, 18]. It is at this point in the analysis that nucleon-level matrix elements enter.
One should bear in mind, however, that single-nucleon physics is not enough: multi-body

FIG. 1. Energy spectrum of the neutrino beam for several experiments. In particular, most of

DUNE’s beam lies in the range 1 GeV < Eµ < 7 GeV. Courtesy Laura Fields [15].
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effects are needed for scattering events that knock out two (or more) nucleons. Even in
nuclear spectroscopy, three-body potentials improve the agreement with observed nuclear
levels [18–20]. Often these calculations use phenomenological potentials, but effective field
theory (EFT) offers a direct connection to QCD [21–24]. Chiral EFTs are, however, limited
to a kinematic range where the momenta are small relative to the chiral symmetry breaking
scale Λχ ∼ 700 MeV. Even then, the reliability of the application of nuclear EFT to large
atomic number systems, such as argon, requires significant development, testing, and, even-
tually, verification. These issues are further intertwined with the constraints of how event
generators [25–29] and detector simulations are implemented. Inconsistencies arise in the
current approach where, for example, the axial form factor of the nucleon is extracted from
νA scattering data assuming one nuclear model and then used in event generators employing
another.

A central goal of nuclear theory in this arena should therefore be to define a path for-
ward that allows for a quantified nuclear uncertainty to be presented for experiments such
as DUNE and HyperK. Achieving this is a challenging task and will require input and con-
straints from lattice QCD in order for it to be successful. In addition to the single- and
few-nucleon amplitudes noted above, it will be valuable to compute directly the properties
of small nuclei. At present, calculations involving nuclei up to 4He are possible. In addition
to being interesting in their own right, such lattice-QCD calculations of few nucleon systems
can be used to constrain low energy constants (LECs) in the EFTs. This approach has
already been applied to static quantities, such as magnetic moments. A next step will be
to work with matrix elements of electroweak currents, to build up effects associated with
two- and higher-body contributions, as well as more complex contributions such as pion
production. In combination with experimental constraints from eA scattering, and neutrino
scattering on light nuclear targets,1 it is hoped a robust uncertainty can be determined.

To study neutrino oscillations, we are interested in the processes

ν`A→ `−X, ν̄`A→ `+X, (1.1)

where A denotes the nucleus and X the combination of all final-state hadrons including
the remnant of the nucleus. The charged weak current responsible for these interactions
has the well-known V − A structure. Properties of the vector current can be inferred from
electromagnetic scattering, up to isospin corrections (which are negligible for the needed
precision; see Sec. IV). On the other hand, because the weak charge of the proton is so
small, Qp

w = 0.0719 ± 0.0045 [31], at the energies of interest, only neutron-neutrino (and
proton-antineutrino) scattering is sensitive to the axial current. These circumstances offer
the possibility of testing lattice-QCD methodology with the vector current before relying on
it for the axial current.

The quantity needed to describe the strong-interaction side of the scattering depends
on the energy transferred. At the lowest energies, the only possibility is coherent elastic
scattering via the weak neutral current, with X = A [32, 33]. Coherent neutrino-nucleus
interactions have recently been observed for the first time [34]. As the energy increases
slightly, the excitation spectrum of A is traced out: X = A∗. The needed quantities are
matrix elements between different nuclear levels. In lattice QCD, one would have to simulate
the whole nucleus directly, which is currently feasible only for nuclei much smaller than those
in the cesium-iodide detector of Ref. [34].

1 Indeed, recent discussions of future experiments with deuterium or hydrogen targets [30] hinge on noting

the utility of nucleon-level amplitudes in nuclear many-body theory.
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At high enough (but still low) energy, a single nucleon can be knocked out. At its heart,
the scattering is

ν`n→ l−p, ν̄`p→ l+n, (1.2)

with the initial and final-state nucleons in the nuclear environment. Such scattering off of a
constituent in a bound-state without extra particles is known as quasielastic. Then nuclear
many-body theory requires single-nucleon matrix elements of the form 〈p(p′)|Jν |n(p)〉, be-
tween a neutron of momentum p and a proton of momentum p′ (or the p → n counterpart
for antineutrino beams). These matrix elements are straightforward to calculate in lattice
QCD; see Sec. II. If pions can be produced, the final state can be a ∆(1232) resonance,
an excited nucleon N∗, or a two-body state Nπ. In the experiment, these all end up as
Nπ so their amplitudes interfere. In fact, lattice QCD can provide not only the associated
transition matrix elements, in the idealization of the resonance as a stable particle (e.g.,
〈∆+|Jν |n〉), but also enough information to describe the full multi-hadron nature of the
final state (at least up to further inelasticities); see Sec. III. The quasielastic and resonance
regions overlap, because the kinetic energy of Fermi motion is a bit larger than the pion
mass. This overlap is illustrated with experimental data in Fig. 2. Another contribution in
this region arises from many-body nuclear dynamics, for example, when the probe interacts
with pairs of correlated nucleons. This contribution is described by “two-body currents”
(see Refs. [36, 37] and references therein). Now a further set of matrix elements is needed,
namely of the form 〈NN |Jν |NN〉. Note that in QCD language, the same current is employed
just for two-body initial and final states.

Once the energy is high enough to produce several pions, it is not possible to enumerate
every final-state hadron. In this case, however, lattice QCD can be used to compute nucleon
and nuclear structure functions. In high-energy physics, structure functions are most famil-
iar in deep-inelastic scattering, where the operator-product expansion (OPE) can be used.
Lattice-QCD calculations can be used to determine the moments of the parton distribution
functions (PDFs) that enter in the deep-inelastic region, and indeed extraction of the full
dependence of PDFs on the longitudinal momentum fraction, x, is becoming possible [38].
Moreover, the definition of structure functions is very general. Lattice QCD may be an
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FIG. 2. Cross sections vs neutrino energy (left) or antineutrino energy (right), showing the relative

contributions of the underlying processes quasielastic scattering, resonance production, and deep-

inelastic scattering [35].

7



ideal way to compute them in the so-called shallow-inelastic region with energy above the
resonance region but insufficient for the OPE; see Sec. III.

In summary, then, the goals for lattice QCD for neutrino oscillation physics are to calcu-
late matrix elements of the form

〈f |Jν |i〉, 〈f |J†µJν |i〉, 〈f |O|i〉, (1.3)

where the initial and final states are single nucleons, two nucleons, nucleons with a pion
(including resonances), or small nuclei. In the last case, O denotes an operator appearing in
the OPE, or a bilocal, spatially-separated operator arising in the calculation of PDFs. The
lattice-QCD calculations of these and related matrix elements have a long history, motivated
principally by the desire to understand nucleon and nuclear structure. For a broad survey,
see our companion whitepaper “Hadrons and Nuclei” [4].

Recall that lattice QCD calculates hadronic correlation functions, which contain in-
formation about the masses and matrix elements of interest; the information is extracted
by fitting the behavior of the correlation functions in (Euclidean) time. Several technical
difficulties make baryon calculations more difficult than the corresponding calculations for
mesons. First, statistical errors on baryon correlation functions are larger and more poorly
behaved in time [41–43]. Second, it has proven more difficult, in practice, to disentangle
matrix elements of the ground-state baryons from that of their excitations [44]. Last, the
dependence of baryon properties on the light quark mass (used in the simulation) is less
well described by the low-energy EFT of pions and baryons. All these difficulties can be
addressed with more computing. The signal-to-noise problem can clearly be attacked with
higher statistics. It can also be mitigated by choosing more sophisticated operators to create
and annihilate baryon states; this method is also the way to better filter out the excited
states. Finally, more computing also enables simulations with lighter and even physical
quark masses [39, 40, 45].

The rest of this whitepaper is organized as follows. In Sec. II, we discuss calculations
that are relatively straightforward. These include nucleon form factors, which are needed
to describe quasielastic scattering, and moments of PDFs, which are needed in the deep-
inelastic region. We discuss the form factors in considerable detail, because the time to
incorporate these results into event generators is soon or, arguably, now. In particular,
having the correct slopes for the form factors is crucial to gaining quantitative control of the
cross section. More challenging calculations are covered in Sec. III. This class of problems is
large and varied: transitions to resonances and multibody states, calculations for shallow-
and deep-inelastic scattering, and the vector and axial matrix elements of small nuclei.
Section IV turns to calculations that are far enough beyond that state of the art that new
ideas or computing facilities greater than exascale are needed. Foreseeable computing needs
are covered in Sec. V, noting the separate needs for both capability and capacity computing.

II. STRAIGHTFORWARD CALCULATIONS

The most straightforward matrix elements to calculate are those with one stable hadron
in the initial state, and one or none in the final state. Here we focus on the matrix elements
of electroweak currents, 〈N |Jµ|N〉, which directly enter neutrino-nucleon scattering, and
matrix elements of local operators, 〈N |O|N〉, where O appears in the operator-product
expansion of two J currents, which arise in the analysis of deep-inelastic scattering.
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A. Nucleon form factors

As discussed in Sec. I, neutrino-nucleon scattering, Eq. (1.2) is a key process even though
the target is a nucleus. The V − A charged current of interest is J+

µ = ūγµ(1 − γ5)d.
The matrix element for n → p can be decomposed into Lorentz covariant combinations of
momentum and spin, multiplied by form factors [46]:

〈p(p′)|J+
µ |n(p)〉 = ū(p)(p′)

[
γµF

CC
1 (q2) + iσµν

qν

2MN

FCC
2 (q2) +

qµ
MN

FCC
S (q2)

+ γµγ5F
CC
A (q2) + γ5

qµ
MN

FCC
P (q2) + γ5

(p′ + p)µ
MN

FCC
T (q2)

]
u(n)(p), (2.1)

where MN = (Mp + Mn)/2, q = p′ − p and ū and u are associated spinor factors. FCC
1 (q2),

FCC
2 (q2), FCC

A (q2), and FCC
P (q2) are known as the Dirac, Pauli, axial, and induced pseu-

doscalar form factors, respectively. The induced scalar and tensor form factors, FCC
S (q2)

and FCC
T (q2), are suppressed by G parity violation; they are known as second-class cur-

rents [47]. For neutral-current processes, additional form factors FEM,N
i and FNC,N

i are
needed: the charged-currents are all isovector, but the neutral currents contain an isoscalar
contribution as well. Here, N denotes either a proton p or neutron n.

Because the up- and down-quark masses are so similar, isospin violation can be neglected
and, thus, the charged-current form factors of the vector current (i.e., Dirac and Pauli)
can be related to their electromagnetic counterparts, up to small corrections from isospin
violation. The Dirac and Pauli form factors are usually re-expressed as electric, GE(q2) =
F1(q2) + q2F2(q2)/(Mn +Mp)

2, and magnetic, GM(q2) = F1(q2) +F2(q2), form factors (even
for CC and NC). Expressions relating the differential neutrino-nucleon cross section to the
form factors can be found, for example, in Refs. [35, 48].

Most neutrino scattering experiments are performed in a kinematic region of a few GeV,
so tracing out the full q2 dependence is possible and desirable (see below). Below 1 GeV
it is convenient to focus attention on the intercepts Fi(0) and (conventionally normalized)
slopes

r2
E ≡ 6

dGE

dq2

∣∣∣∣
q2=0

, r2
M ≡

6

GM(0)

dGM

dq2

∣∣∣∣
q2=0

, r2
i ≡

6

Fi(0)

dFi
dq2

∣∣∣∣
q2=0

, (2.2)

for i ∈ {A, S, T , P}. The quantities ri are usually called “radii”, although the neutron’s r2
E

is negative.
A precise knowledge of the charged-current versions of these quantities is essential for de-

termining the neutrino-nucleon cross section. The intercepts and slopes of GCC
E and GCC

M are
well determined from electromagnetic processes and isospin relations. Further, the intercept
FCC
A (0) = gA = −1.2723(23) is known from neutron β decay [49]. The axial coupling gA has

been calculated in lattice QCD, although it will be some time before it can be computed with
comparable precision to experiment. Nevertheless, it is an extremely important benchmark,
and once the lattice-QCD precision becomes competitive with experiment, the result could
clear up some puzzles surrounding neutron-decay measurements (see below).

On the other hand, the axial-charge radius-squared r2
A is less well known. Historically,

the axial form factor has been fit to the so-called “dipole” form:

FA(q2) =
gA

(1− q2/m2
A)2

, (2.3)
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such that r2
A = 12/m2

A. Experiments report this “axial mass”, mA, so a comparison of
reported values illustrates the current status. It has been extracted from quasielastic scat-
tering on deuterium targets, finding (e.g.) mA = 1.02(3) GeV [50], and from pion elec-
troproduction, finding mA = 1.08(4) GeV [51, 52]. More recent experiments find larger
values: mA = 1.20(12) GeV at K2K [53], mA = 1.27(15) GeV at MINOS [54], and even
mA = 1.35(17) GeV at MiniBooNE [55], in neutrino charged-current quasielastic scattering
with water, iron, and mineral-oil targets, respectively. With 2p-2h corrections, however,
NOMAD [56], with a Kevlar target, finds mA = 1.05(6) GeV and

MINERvA [57], with a carbon target, finds the quasielastic cross section to be compatible
with mA = 0.99 GeV. Note that all of these determinations of mA assume a nuclear model
for the target material, which is not the same among the various collaborations. Moreover,
nuclear modeling uncertainties typically come only from varying parameters of their choice
model, not from studying comparisons among different models.

The uneasy agreement of these results can be removed by switching to a model-
independent parametrization of FA(q2) [46]. For example, a reanalysis of 1980s deuterium

bubble-chamber data [58] finds
√

12/r2
A = 1.01(24) GeV. These data are chosen because

the nuclear model of the deuteron is under relatively good control. The main conclusion of
Ref. [58] is that introducing only one free parameter with a qualitatively acceptable but con-
ceptually incorrect shape, as in Eq. (2.3), leads to gross underestimates of the uncertainty,
even when the fit quality is high.

Figure 4, from Ref. [59], shows the dependency of νn quasielastic cross section on Eν ,
assuming r2

A is known with 20% uncertainty. As one can see, this quantity affects the both
the normalization and fall-off of the cross section, which are needed, respectively, to deter-
mine the mixing angle and mass difference in an oscillation. Furthermore, a lattice-QCD
calculation with 20% uncertainty (compared to 50% in Ref. [58]) is an important milestone,
because then the r2

A uncertainty becomes subdominant, at least until other uncertainties
have been reduced.

The lattice-QCD community has been pursuing the calculation of the nucleon form fac-
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tors for a long time. A representative set of recent work can be found in Refs. [60–74]
Significant improvements have been made to investigate the quark-mass, finite-volume, and
finite-lattice-spacing dependence, and the effects of excited-state contamination in the corre-
lation functions. With these technical and algorithmic advances, lattice QCD can calculate
not only the isovector contribution but also the computationally more demanding isoscalar
and strange-quark contributions, which are needed for neutral-current processes, discussed
below.

Sample lattice-QCD calculations [66, 75] of the nucleon isovector electric and axial form
factors—GE and FA—are shown in Fig. 4. Eight different 2 + 1 + 1-flavor HISQ ensembles
generated by the MILC collaboration [40] with lattice spacings in the range 0.06–0.12 fm
and pion mass in the range 130–310 MeV are employed. In this calculation, excited-state
contamination is controlled via a three-state fit. The results are in good agreement with the
experimental data for the nucleon electromagnetic form factor GE(q2) On the other hand, the
axial form factor is not as steep as experimental determinations with mA ≈ 1 GeV [76], yet
is compatible with MiniBooNE’s mA ≈ 1.35 GeV [55]. Despite the many laudable aspects
of Ref. [66], a full and robust accounting of all systematics involved in these lattice-QCD
calculations has not yet been feasible. Reliable confrontation with precise experimental
data for GE—and, hence, a solid prediction of FA—requires an increase in computational
resources to overcome the technical obstacles to nucleon matrix elements, discussed in Sec. I.

The status of lattice-QCD calculations of gA and r2
A is shown in Fig. 5. The left plot [77],

for gA, shows that lattice-QCD is at this time much less precise than the results from neutron
β decay.2 Note, however, that bottle and beam experiments measuring the neutron lifetime
yield values of gA that differ by 3σ. For example, a 2015 bottle measurement leads to
gA = 1.2749(11) [80], while a 2013 beam measurement leads to gA = 1.2684(20) [81]. It
would be interesting to know the answer from lattice QCD. The precision required depends
on whether the (average of several) calculation(s) lands between the two neutron-lifetime
values or outside the interval. In the latter case, at least percent-level precision is needed,
which is likely to be achieved with three years (assuming sustained computing support). If

2 The color code here is adapted from the Flavor Lattice Averaging Group [78], as specified in the Appendix

of Ref. [79].
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lattice QCD lands in the middle, 0.3% precision is needed. In this scenario, we would also
need 1+1+1(+1)-flavor ensembles, since the isospin symmetry would play an important role
at such precision; it would take 5–10 years to account for full systematics.3

The right plot [59], for r2
A, shows significant problems: the analysis with the z expan-

sion [58] debunks the uncertainty estimates of determinations predicated on the dipole form.
The model independent results (red; between the horizontal lines) illustrate the best estimate
of r2

A without such strong assumptions. One should bear in mind that the “experimental”
determinations all make assumptions: without new νd and ν̄p experiments [30], it seems
nearly impossible to improve the situation via experiment. On the other hand, lattice gauge
theory can provide an ab initio result from QCD. Indeed, lattice QCD is beginning to play
a role, but another generation of calculations is needed before fully definitive results with
uncertainties small enough to make an impact on cross section calculations are achieved.

For the full energy range of LBNF/DUNE, it will be necessary to trace out the full q2
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FIG. 5. Status of lattice-QCD calculations of gA (left) and r2
A (right), together with non-lattice de-

terminations. Left: Filled green (unfilled red) lattice-QCD results have (in)complete error budgets.

The violet line in the upper panel is the PDG average of the results in the bottom panel, in which

the scale is blown up by a factor of 10. Right: As discussed in the text, the error bars on r2
A from

dipole fits are underestimated and the two small lattice-QCD error bars stem from incomplete

error analyses (critiqued below). The references for r2
A from top to bottom are as follows: “νd

and eN → eN ′π (dipole)” [50], “νd (z exp.)” [58], “MuCap this work” [59], LHPC [62] (NB: one

lattice spacing and Mπ = 317 MeV), ETMC [63] (NB: no strange sea and a small volume such that

MπL < 3), CLS [64], PNDME[65]. From Refs. [77] (left) and [59] (right, adapted with permission).

3 Note that the normalization of the matrix element can be blinded with an multiplicative offset [82], to

guard against analyst bias. The results in Fig. 5 (left) have not, however, employed this technique.
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dependence of the form factors. It is imperative to use a model-independent parametrization
based on general analytic properties. In the complex-q2 plane, the vector (axial) form factors
have a cut starting at q2 = tcut ≡ 4M2

π (q2 = tcut ≡ 9M2
π) and extending to ∞ on the real

axis. The cut lies outside scattering kinematics q2 < 0 but nevertheless prevents a useful
series expansion in q2 around the origin. A rigorous way to proceed is to introduce a
conformal mapping that maps the cut to the unit circle [83, 84]:

z(t) =

√
tcut − t−

√
tcut − t0√

tcut − t+
√
tcut − t0

, (2.4)

where the parameter t0 can be chosen to center the q2 range of interest on z = 0; in general,
spacelike q2 → −∞ maps to z → 1. An expansion of the form

F (z) =
∑
k

akz
k (2.5)

thus has an expansion parameter |z| < 1. Moreover, unitarity in quantum mechanics ensures
that the series is uniformly convergent on this interval. In fact, unitarity leads to bounds
on the coefficients ak that the dipole form, Eq. (2.3), violates [46].

In practice [46, 85–87], the z expansion converges after a few terms. Because on the
nonlinear mapping, even an intercept and slope in z give a form factor with a physical
shape (i.e., similar to those shown in Fig. 4). As lattice data improve, more and more terms
will become resolvable. As in CKM physics [86, 87], lattice-QCD papers can provide the
coefficients, their uncertainties, and their correlations; several lattice-QCD calculations of
FA do the same [62–65]. Finally, code for taking such z-expansion input is included in the
GENIE event generator [27] module for the axial form factor, and work is underway to
extend this to the vector form factor channel.

Although not crucial to neutrino oscillations, the same experiments study weak neutral-
current interactions of the Z boson and, possibly, non-Standard bosons [88, 89]. The corre-
sponding Dirac and Pauli form factors can be obtained from the proton and neutron elec-
tromagnetic form factors and the strange-quark contribution (accessible in parity-violating
elastic electron-scattering experiments [90]) as

FNC
i =

(
1
2
− sin2 θW

)
(F em,p

i − F em,n
i )− sin2 θW (F em,p

i + F em,n
i )− 1

2
F s
i , (2.6)

i ∈ {1, 2}.

Using the most recent z-expansion fit to nucleon electromagnetic form factors [91] and a
new lattice-QCD calculation of strange-quark form factors [92], one can see that the strange-
quark contribution increases the neutral-current Pauli form factor, FNC

2 (q2), by about 3.1%
and 2.5% at q2 = 0 and q2 = −0.1 GeV2, respectively. Although the strange-quark contri-
bution is small, the coefficients (1

2
− sin2 θW) and sin2 θW suppress the two combinations of

nucleon electromagnetic form factors in Eq. (2.6), such that the strange-quark sea makes an
important contribution to FNC

2 (q2) at low q2.
Similarly, assuming isospin symmetry and the absence of second-class currents, one can

relate the neutral-current axial form factor to the charged-current axial and strange-quark
axial form factors [93, 94]:

FNC
A = 1

2
(−FCC

A + F s
A). (2.7)

It has been shown [95, 96] that the effect of Pauli blocking becomes very significant in the
region 0 < −q2 . 0.2 GeV2. Therefore, a precise lattice-QCD calculation of FNC

A (q2) is
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required for a precise estimate of the neutral-current (anti)neutrino-nucleon scattering cross
section.

Finally, we note that quasielastic neutrino and antineutrino scattering would be sensitive
to the presence of the second-class currents, FS and FT in Eq. (2.1), characterized by a
different G-parity to the standard vector and axial currents of the Standard Model. The
search for such currents has long been pursued in the β-decay experiments and in muon-
capture experiments, but the measurement of polarization observables in the quasielastic
scattering both of nucleons and of hyperons has been shown to be sensitive both to G
invariance and to T -invariance [97]. Lattice QCD can contribute to these tests through
calculations of induced scalar and tensor currents, including calculations of transition form
factors to the rest of the SU(3) baryon octet (Λ and Σ as well as p and n), such as those in
Refs. [98, 99].

B. Moments of parton density functions

Lattice QCD can be used to calculate matrix elements of other operators besides the
electroweak currents. An important class of operators are those the appear in the operator-
product expansion of two currents. Their matrix elements are related to the moments
of structure functions in deep-inelastic scattering. For a full discussion, see the USQCD
companion white paper “Hadrons and Nuclei” [4]. Here, applications to neutrino physics
are discussed.

In 2001, the NuTeV collaboration determined the on-shell weak mixing angle, sin2 θW ≡
1−m2

W/m
2
Z , to be 0.2277± 0.0013stat± 0.0009syst [100] in deep-inelastic neutrino scattering

off iron. This result is 2.7σ discrepant from the current world average of other experiments,
0.22343± 0.00007 [49]. This discrepancy, which is known as the “NuTeV anomaly”, has no
universally accepted explanation, although many possibilities have been raised [101–106].

One suggestion that may account for part of the anomaly is the strange-antistrange parton
asymmetry [107, 108], 〈x〉s− =

∫
dx x [s(x)− s̄(x)], where s(x) (s̄(x)) is the (anti)strange

parton distribution function, as a function of parton momentum fraction x. A global analysis
of several experimental data sets gives 〈x〉s− ≈ 0.0018 [109], which is consistent with a 2006
NuTeV analysis of dimuon production [110]. The global analysis does not, however, find a
tight constraint: the authors of Ref. [109] present the range −0.001 < 〈x〉s− < 0.005 at 90%
confidence level.

In view of the uncertain of 〈x〉s− from global fitting, a first-principles lattice-QCD cal-
culation is warranted. There is, however, no local operator which corresponds to 〈x〉s− .
Instead, one can calculate the third moment from the local operator s̄γµDνDλs which cor-
responds to 〈x2〉s− =

∫
dx x2(s(x) − s̄(x)). Assuming s(x) − s̄(x) changes sign only once,

〈x2〉s− should give the same sign as that of 〈x〉s− . This quantity can also be used to constrain
the x-dependent distribution, but since it is expected to be small, calculations will require
significant resources.

III. CHALLENGING CALCULATIONS

In this section, calculations that are computationally more difficult than the form factors
in Sec. II are discussed. That said, the conceptual formalism underlying these calculations is
well established, and pilot calculations provide some idea of how more complete calculations
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can be carried out. More complicated final states in the resonance regions (Sec. III A), the
shallow inelastic region (Sec. III B), and the deep inelastic region (Sec. III C) are discussed,
as are calculations of the axial charge, and related quantities, of small nuclei (Sec. III D).

A. Transition form factors: resonances and multibody final states

Neutrino scattering above the pion-production threshold constitutes the resonance region,
where the scattered nucleon is excited into resonances, beginning with the ∆(1232). To
describe the data in this regime thus requires a quantitative knowledge of the N → ∆ and
N → N∗ transitions, mediated through an external current. Because these hadrons are
unstable, they can also be viewed as a nucleon with one or more pions, which are the only
hadrons composed of the light u/d quarks stable under the strong interaction.

Lattice QCD has a long history of calculations of the transition form factors to the ∆,
treating it as stable. Both the vector current [111, 112], and the axial current [113] have
been studied with unphysically large quark masses, such that M∆ at these quark masses lies
below the Nπ threshold. These calculations are useful benchmarks for comparisons with
non-lattice approaches that neglect the two-body nature of the resonance. Although not as
rigorous as the methods discussed below, this “quick and dirty” approach may be timely,
for example, providing qualitative input to understand better the MiniBooNE low-energy
backgrounds from ∆→ Nγ [114].

Because of the finite volume and Euclidean signature, calculations with two-body states
in lattice QCD are conceptually and computationally more difficult [115, 116] than the
calculations discussed in Sec. II. For example, the Lüscher method [115] relating energy
shifts at finite volume to infinite-volume momentum-dependent phase shifts has been used
to study the ρ meson [117–121], as well as I = 2 ππ phase shifts [122–126] from first
principles. The theoretical framework for understanding the transition to multihadron states
from Euclidean-space lattice QCD calculations have been further developed over the past
several years. Notably, the formalism has been extended both to inelastic scattering [127–
131] with several two-body channels, and to three-body scattering [132–137], and there have
now been several computational applications of these advances [138–141].

A quantitative understanding of resonance production entails extending the formalism to
encompassing transitions mediated through external currents, corresponding here to both
vector and axial currents. The needed formalism to two-body final states, and for arbitrary
spin, has now been developed [142]. The applications have largely focused on the meson
sector. To cite an example bearing some similarity to W ∗n → ∆ in neutrino scattering,
the γ∗π → ρ transition has been computed in lattice QCD [143, 144], providing the first
rigorous calculation of the transition form factor to an unstable hadron, illustrated in Fig. 6
In addition, methods to extract resonance-to-resonance transitions, for example, γ∗ρ → ρ,
via lattice calculations of two-to-two transition amplitudes, in this case γ∗ππ → ππ, have
been developed [145, 146]. This opens the possibility for calculations of two-body currents,
that is, matrix elements of the form 〈NN |Jµ|NN〉 needed for two-nucleon knockout.

Thus, the theoretical underpinnings for understanding resonance production in νN → ∆,
N∗, and Nπ, are therefore largely in place. Calculations of multihadron states containing
baryons are complicated by the extra complexity of the systems relating to the increased
number of quarks, by poorer signal-to-noise ratios, and by the larger number of open chan-
nels. Even so, the first ab initio determination of ∆(1232) resonance parameters appeared
in 2017 [147], albeit for a simulation with quark masses corresponding to a pion mass of
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280 MeV, yielding a ∆-N -π coupling in agreement with phenomenological determinations.
As the invariant mass of the system increases within the resonance regime and the pion mass
is decreased to its physical value, however, inelastic processes and three- and higher-body
final states become relevant. Further theoretical work is needed to encompass transitions to
three or more particles, and further development of efficient algorithms is needed to evaluate
the larger number of Wick contractions that increasingly dominate the computational cost
of the calculation. The interplay between theoretical methods and practical algorithms is,
of course, ideally researched on high-capacity computing facilities.

B. Hadron tensor for shallow and deep inelastic scattering

At higher energies, more and more pions are produced and a full theoretical description
of any given final state becomes impractical. One can, however, study the sum over all final
states via the optical theorem and consider forward matrix elements of the product of two
currents. Whereas nuclear many-body theory decomposes the low-multiplicity cases into
products of nuclear wavefunctions and nucleon (and Nπ, . . . ) form factors, here one can
decompose the nuclear hadron tensor, 〈A|J†µJν |A〉, into a spectral function [148] and the

nucleon hadron tensor, 〈N |J†µJν |N〉. A recent development in lattice QCD is to calculate
this quantity from a four-point correlation function. This approach is especially appealing
in the region, sometimes called shallow inelastic, between the resonances and deep-inelastic
scattering, where no other theoretical tool holds much promise [16].

The Euclidean hadronic tensor [149–156] can be decomposed in terms of structure func-
tions that are related to their Minkowski counterparts through a Laplace transform. Thus, to
obtain the desired structure functions, an inverse Laplace transform is needed, an ill-posed
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FIG. 6. The upper and lower panels show the γ∗π+ → π+π0 and l = 1 elastic ππ scattering cross

sections, respectively, as a function of ππ energy, with the ρ resonance clearly visible [142].

16



problem that arises in many fields. Three approaches to this problem are the maximum
entropy method (MEM) [151], the MEM with a prior to stabilize the fit for Bayesian recon-
struction (MEM-BR) [154], and the Backus-Gilbert method [156]. These three numerical
approaches have been studied recently [157]. The Backus-Gilbert method yields a single
broad peak in the energy spectrum from lattice data with 20 points in Euclidean time.
With both the MEM and MEM-BR, the elastic peak and the resonance peak are resolved,
with the MEM-BR producing sharper peaks and a more stable reconstruction. Given the
test lattice spacing of 0.12 fm, there is no excitation spectrum above 2 GeV and, thus, no
strength in the spectral weight above the resonance region. For a finer lattice with spacing
0.04 fm, the spectral weight up to 5 GeV is accessible. Even though it may still not be suf-
ficient to resolve the individual resonances, the fact it can cover both the resonance and the
shallow inelastic scattering regions makes the lattice hadronic tensor calculation a promising
theoretical tool to address the total cross section of the neutrino-nucleus scattering over a
wide range of energy transfers up to 5 GeV.

The hadron tensor can also be computed for deep-inelastic scattering. In this case, the
calculation needs to be able to access the kinematic region where Q2 > 4 GeV2 and energy
transfer ν > 5 GeV where the higher-twist contributions are suppressed. The Euclidean
correlation function can also be analyzed with the OPE, along the lines of the suggestion
for calculating the shape function of the inclusive B-meson semileptonic decay rate [152].
In addition, using a fictitious heavy-quark propagator between the currents to calculate
moments has been proposed [153]. A related approach is also discussed in Ref. [155]. Unlike
the approaches discussed in the next subsection, the hadron-tensor approach to deep-inelastic
scattering does not need to match to the infinite-momentum frame.

C. Parton densities for neutrino deep-inelastic scattering

The parton distribution functions (PDFs) will be important inputs in the upcoming
precision neutrino-physics experiments, particularly at large Bjorken x and at the highest
energies of the DUNE beam, ∼ 4–5 GeV. For these kinematics, current global-fit PDFs either
suffer greatly from the theoretical uncertainty in their nuclear treatment or rely mainly on
extrapolation from intermediate x.

Direct calculation of the Bjorken x dependence of hadron structure in lattice QCD has
only recently become possible thanks to the development of the large-momentum effective
theory (LaMET) [158], which introduces a large momentum P to connect Euclidean lat-
tice QCD to the desired Minkowski distributions.4 This framework has allowed the first
direct lattice-QCD computations of the x dependence of parton distributions [162]. Further
developments spurred on by these developments include that of pseudo-PDFs [163], and
that of matrix elements of gauge-invariant current-current correlators [164]. In these new
approaches, valence- and sea-quark structure can be disentangled, which leads to the pos-
sibility of using lattice-QCD calculations to directly compare with experiments on large-x
structure in SoLID at Jefferson Lab, with sea structure in Drell-Yan experiments at Fermilab
or with data from a future electron-ion collider. In addition to the hadron-tensor method
described in the previous subsection, these new approaches and numerical investigations
thereof are described in detail in the companion whitepaper “Hadrons and Nuclei” [4].

4 See Refs. [159–161] for critical discussions of this approach.
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The lattice-QCD effort so far has focused on isovector combinations of PDFs, that is,
the difference between the up and down distributions. A recent joint lattice-QCD and
global-fitting community report [38], an effort led by USQCD members, demonstrated that
a calculation of the isovector proton PDF at the 12% level for x ∈ [0.7, 0.9] can impact our
knowledge of the PDF at x near 1 by more than 20%. This kinematic region is relevant for
neutrino experiments, and such precision should be feasible in the near term. In addition,
as crosscheck of nuclear theory in this region, exploratory calculations of nuclear PDFs
will become available; see Sec. III D. Such precision is already relevant to neutrino-nucleon
scattering at 4–5 GeV. Further, it allows a crosscheck of the nuclear-theory treatment and
of the systematic uncertainties of nuclear PDFs.

Neutrino DIS can be important for determining the strange quark and antiquark parton
distributions. Currently, no calculation of the Bjorken-x dependence of the strange PDF has
been done with lattice QCD, due to numerical limitations, but there are USQCD proposals
to investigate s(x)− s̄(x). On the other hand, the nucleon sea flavor asymmetry ū(x)− d̄(x)
has been studied [165]. Unfortunately, the uncertainties in the quasi-PDF approach are
currently much larger than those from experimental/phenomenological extraction.

Going to larger nucleon boost momenta P with high statistics is key to reducing several
systematic uncertainties in these quasi-PDF and pseudo-PDF approaches [4], especially for
the antiquark distribution and small Bjorken x. However, this poses several computational
challenges. First, large momentum translates into large (aP )n, and therefore, ensembles with
increasingly smaller lattice spacings a are needed. Given the need to keep the spatial size of
the box sufficiently large to avoid significant finite-volume effects, which may be enhanced
for some nonlocal matrix elements [166], this increases the computational cost. Second, as
the momentum becomes larger, the signal-to-noise ratio degrades, even when using methods
such as “momentum smearing”[167], designed to enhance the contribution of the lowest-lying
state in correlation functions at nonzero three-momentum, thereby increasing the number
of measurements that need to be made. Last, the excited-state contributions themselves
become more significant at higher momenta both through the greater number of contributing
states arising from the reduced symmetries at nonzero momentum, and through the relative
compression of the energy spectrum. This requires either calculations at many source-sink
separations, or the use of the variational method with an expanded basis of operators.
Thus calculations of the precision that the neutrino program demands requires a significant
commitment of computational resources.

D. Axial currents in light nuclei

An important challenge for lattice QCD is to extend the calculations of the axial proper-
ties of the nucleon to the more complex systems of nuclei. Just as for the nucleon, knowing
nuclear matrix elements of axial currents and of quantities relevant in deep-inelastic scat-
tering on nuclei are high priorities in the lattice-QCD community. Over the last decade,
first studies of a range of nuclear properties have been performed, and calculations of the
requisite axial structure of light nuclei are eminently feasible in a five-year timeframe.

Nuclear effects in neutrino-nucleus scattering are important, extremely nontrivial, and
not simply related to those in electron-nucleus scattering. For example, Gamow-Teller tran-
sitions in nuclei [168–170], which flip spin and isospin of the nucleus, are poorly described
in most simple nuclear models, with deviations of as much as 25% from naive expectations
based on simply scaling from the single-particle n→ peν̄ transition. Once sophisticated nu-
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clear wave functions and many-body axial currents [171, 172] are used, however, agreement
with the data is reached [173]. At higher energies, state-of-the-art Green-function Monte-
Carlo (an exact many-body method) calculations [174, 175] show that neutrino response
functions describing scattering on nuclei such as 12C have effects from two-body currents at
the 20% level, particularly in the transverse response.

In the last few years, USQCD collaboration members have performed lattice-QCD cal-
culations of A = 2, 3 axial transitions in the forward limit using unphysically heavy quark
masses corresponding to Mπ ∼ 800 MeV [176–178]. This work, in which the Gamow-Teller
contribution to tritium β-decay and the rate of the pp→ deν̄ fusion process were extracted,
demonstrates that the calculations relevant to constrain neutrino interactions with light
nuclei can be performed. While nuclear effects in the axial matrix elements of two- and
three-body systems are found to be at the few percent level, the lattice-QCD calculations
were able to resolve the relevant effects by isolating the intrinsically two-body contribu-
tions. Pursuing these calculations at the physical quark masses and controlling all sources
of systematic uncertainties in them will require exascale computing resources. Beyond these
forward limit calculations, extensions of this approach to enable calculations of the form
factors of light nuclei from nonforward transition matrix elements are underway. Calcula-
tions involving multiparticle final states are also necessary but challenging: a theoretical
understanding of the simplest inelastic channels is presented in Ref. [145]. For high-energy
neutrino-nucleus scattering in the deep-inelastic regime, lattice-QCD calculations of the mo-
ments of the relevant parton distributions in nuclei will be useful in constraining nuclear
effects in a very different kinematic regime.

While these calculations do not directly address the particular nuclear targets for DUNE
and other neutrino-scattering experiments, they are useful in constraining the low-energy
constants and meson-exchange currents that enter nuclear-chiral-EFT axial currents [171,
172]. Such matchings are already underway for spectroscopy [179–181] and electromagnetic
interactions [182] at unphysical values of the quark masses, and the machinery necessary to
undertake this at the physical quark masses is being developed. As well as studies of currents,
lattice-QCD calculations of nuclei and other systems such as three and four neutron systems
will provide input into the three-body forces in nuclear EFTs, particularly those aspects of
these forces that are challenging to access experimentally.

IV. EXTREMELY CHALLENGING CALCULATIONS

Looking further into the future, we can foresee the need for calculations that go far enough
beyond the current state of the art that it is hard to know when or whether they will be
possible.

A. Electromagnetic and isospin-breaking effects

Going beyond the leading order, calculations of nucleon matrix elements must incorpo-
rated the neglected contributions from both QED and from strong isospin breaking (SIB).
There are two possible approaches for completing these tasks, which can be generally clas-
sified as being perturbative and nonperturbative. Perturbative calculations make use of
existing isospin-symmetric and QCD-only lattice ensembles to compute the desired matrix
elements. The QED effects are computed with explicit vector current insertions and some
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scheme for the virtual photon lines. Similarly, the SIB effects are included via scalar current
insertions that allow for expansion in quark mass about the isospin-symmetric point. For
nucleon matrix elements, perturbative calculations require five-point correlation functions
as well as disconnected diagrams and and pose a significant challenge to pursue.

Nonperturbative calculations make use of gauge ensembles that include explicit sea effects
for QED and SIB. These are SU(3) × U(1) gauge field ensembles with the up and down
quark masses tuned to their physical values. Rather than being restricted to a perturbative
expansion of photon fields, these calculations include combined gluon, photon, and quark
loops to all orders. While these calculations are likely to be cheaper than the perturbative
calculations mentioned above, they also have technical difficulties that must be overcome.
The most challenging of these difficulties is likely to come from finite size effects. Since
photons mediate a long range force, calculations including QED will be sensitive to the
size of the lattice. Many computations on lattice ensembles with different volumes will be
necessary to quantify and remove this systematic effect.

B. Axial currents in heavier nuclei

A holy grail for neutrino-nucleus scattering is controlled QCD calculations of the axial
form factors, resonance transition form factors, and nuclear PDFs for 40Ar, the target nucleus
in DUNE and several other experiments. As yet, exponentially hard challenges must be
overcome in order for meaningful lattice-QCD calculations of such heavy nuclei. Both the
factorial growth complexity of many-body contractions and the exponentially degradation
of the signal-to-noise ratio are currently impede to progress on this front. Since lattice-QCD
studies of nuclei are relatively new, it is not unlikely that new algorithms will definitively
alter this picture (algorithms involving machine learning and quantum computation [183]
may dramatically improve the situation),5 but at present it is realistic to assume that direct
lattice-QCD calculations of argon will not occur in a timeframe relevant for the coming
long-baseline experiments.

Perhaps more realistically, significant tests of nuclear EFT frameworks beyond the few-
body sector would be enabled by lattice-QCD calculations of the spectrum and axial struc-
ture of an intermediate nucleus such as 12C. Aspects of coherent scattering off nuclei will also
be addressed by such calculations. While still challenging, a number of groups are investigat-
ing ways to perform the relevant contractions and studying improved ways to extract signals
from noisy multi-baryon data through optimization methods [184] or improved estimators
[43, 185–188]. For carbon targets, experimental scattering data exists and comparison of
lattice-QCD calculations with this will help understand the systematics of the A dependence
of nuclear EFT approaches and assess the reliability of the extrapolations to argon.

For light nuclei, adapting the techniques discussed above to address the Bjorken-x de-
pendence on nuclear PDFs will become possible as computing resources increase. While
challenging, and still in the development stage even for the nucleon, these PDF methods
will help constrain the flavor and spin dependence of nuclear PDFs that are important for
high-energy νA scattering.

5 For discussion of these novel approaches, see the companion whitepaper “Status and Future Perspectives

for Lattice Gauge Theory Calculations to the Exascale and Beyond” [5].
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V. COMPUTING NEEDS

As we have seen in Secs. III and IV, many topics pertaining to lattice QCD for neutrino
physics are still exploratory. In those cases, computing estimates are impossible because
progress depends on innovation and flexible computing, rather than an industrial resource.
It is feasible and reasonable, however, to estimate the computing needs of the calculations
discussed in Sec. II. We do so here, focusing on the example of nucleon form factors.

The methodology for the calculation of the axial and the electromagnetic form factors
is well established, and data with control over statistical errors have been generated by
several collaborations worldwide. Table I list several of these efforts. Unfortunately, only a
few include several ensembles with strange sea quarks [65, 68, 71]. Even those calculations
should be pushed to smaller lattice spacing and (in one case) smaller up-down quark mass.
Furthermore, most calculations obtain mean-squared charge radii (rA, rE, and rM) that are
smaller than phenomenological extractions, by about 30%. To diagnose where the difference
lies, it is crucial to improve control over systematic uncertainties in lattice-QCD calculations
to obtain a definitive result from QCD.

Here we base the cost estimates for achieving a 10–15% result on two ongoing efforts
within USQCD. A convenient starting point is the work of PNDME collaboration that has
presented extensive results for the axial form factors [65] using the Wilson-clover formulation
for the valence quarks on ensembles with 2+1+1 sea quarks with the staggered formulation.
One way to avoid this “mixed action” approach is to use staggered valence quarks [82].
Based on current running on institutional clusters at BNL and Fermilab, we estimate 9M
GPU-hours6 to carry out a calculation on eleven ensembles, five at physical sea-quark mass,
and six with ml = 1

2
(mu +md) = 0.2ms, with lattice spacing as small as 0.03 fm.

TABLE I. Sample of calculations of nucleon form factors going on worldwide. In the first column,

“2”, “2+1”, and “2+1+1” all denote two equal-mass quarks for up and down; the latter two

include strange and charm, respectively. The last column indicates work in which USQCD members

participate.

Sea quarks Valence quarks Nens a (fm) Mπ (MeV) Collaboration Ref. USQCD

2 Wilson-clover same as sea 11 0.06–0.08 150–490 RQCD [60]

2 TM clover same as sea 1 0.09 130 ETM [63]

2 Wilson-clover same as sea 11 0.05–0.08 190–470 Mainz (CLS) [64]

2+1 overlap same as sea 4 0.11 290–540 JLQCD [67]

2+1 domain wall [45] overlap 3 0.08–0.15 170–340 χQCD [70] X

2+1 Wilson-clover same as sea 1 0.085 146, 135 PACS [73]

2+1 Wilson-clover same as sea 11 0.05–0.09 200–350 Mainz (CLS) [71]

2+1+1 HISQ [40] Wilson-clover 8 0.06–0.12 135–210 PNDME [65] X

2+1+1 HISQ [40] domain wall 16 0.09–0.15 130–400 CalLat [68] X

2+1+1 TM clover same as sea 3 0.09–0.15 140 ETM [74] X

2+1+1 HISQ same as sea 3 0.09–0.15 135 Fermilab/MILC [82] X

6 For QCD codes, these 9M GPU hours correspond to 300M conventional (e.g., Intel Skylake) CPU core-

hours.
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Similarly, a significant subset of USQCD plans on generating a suite of ensembles with
Wilson-clover sea quarks. To generate eight such ensembles, with light sea-quark masses
corresponding to pion masses of 170 MeV and 270 MeV (four ensembles each), with lat-
tice spacing as small as 0.05 fm. The estimate to finish generating these ensembles is 8M
GPU-hours (assuming the GPUs on Summit at ORNL). This chunk of computing will be
shared with many other projects, particularly those described in the companion white paper
“Hadrons and Nuclei” [4]. The computation of the needed nucleon correlation functions is
estimated to require 15M GPU-hours.

These estimates set the scale for a modern calculation of the simplest quantity needed for
neutrino physics. At the same time, comparably demanding work with small nuclei, but not
yet physical pion mass, will be needed. Such work is necessary to understand the technical
issues facing more realistic calculations and to find better methods and algorithms. Even
assuming gains from innovation, it is hard to imagine that nuclear form factors will end up
below 10M GPU-hours. The same line of reasoning can be applied to other calculations
discussed in Sec. III.
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nucleon,” Phys. Rev. Lett. 72, 1790–1793 (1994), arXiv:hep-ph/9306299 [hep-ph].

[150] K. F. Liu, S. J. Dong, Terrence Draper, D. Leinweber, J. H. Sloan, W. Wilcox, and R. M.

Woloshyn, “Valence QCD: connecting QCD to the quark model,” Phys. Rev. D59, 112001

(1999), arXiv:hep-ph/9806491 [hep-ph].

[151] Keh-Fei Liu, “Parton degrees of freedom from the path-integral formalism,” Phys. Rev. D62,

074501 (2000), arXiv:hep-ph/9910306 [hep-ph].

[152] U. Aglietti, Marco Ciuchini, G. Corbo, E. Franco, G. Martinelli, and L. Silvestrini, “Model

independent determination of the shape function for inclusive b decays and of the structure

functions in DIS,” Phys. Lett. B432, 411–420 (1998), arXiv:hep-ph/9804416 [hep-ph].

[153] William Detmold and C. J. David Lin, “Deep-inelastic scattering and the operator product

expansion in lattice QCD,” Phys. Rev. D73, 014501 (2006), arXiv:hep-lat/0507007 [hep-lat].

[154] Keh-Fei Liu, “Parton distribution function from the hadronic tensor on the lattice,” PoS

LATTICE2015, 115 (2016), arXiv:1603.07352 [hep-ph].

[155] A. J. Chambers, R. Horsley, Y. Nakamura, H. Perlt, P. E. L. Rakow, G. Schierholz, A. Schiller,

K. Somfleth, R. D. Young, and J. M. Zanotti (QCDSF), “Nucleon structure functions

from operator product expansion on the lattice,” Phys. Rev. Lett. 118, 242001 (2017),

arXiv:1703.01153 [hep-lat].

[156] Maxwell T. Hansen, Harvey B. Meyer, and Daniel Robaina, “From deep inelastic scattering

to heavy-flavor semileptonic decays: Total rates into multihadron final states from lattice

QCD,” Phys. Rev. D96, 094513 (2017), arXiv:1704.08993 [hep-lat].

[157] Jian Liang, Keh-Fei Liu, and Yi-Bo Yang, “Lattice calculation of hadronic tensor of the

nucleon,” EPJ Web Conf. 175, 14014 (2018), arXiv:1710.11145 [hep-lat].

[158] Xiangdong Ji, “Parton physics on a Euclidean lattice,” Phys. Rev. Lett. 110, 262002 (2013),

arXiv:1305.1539 [hep-ph].

[159] Giancarlo Rossi and Massimo Testa, “Euclidean versus Minkowski short distance,” Phys.

Rev. D98, 054028 (2018), arXiv:1806.00808 [hep-lat].

[160] Krzysztof Cichy and Martha Constantinou, “A guide to light-cone PDFs from lattice QCD:

an overview of approaches, techniques and results,” (2018), arXiv:1811.07248 [hep-lat].

[161] Christopher Monahan, “Recent developments in x-dependent structure calculations,” PoS

LATTICE2018, 018 (2018), arXiv:1811.00678 [hep-lat].

31

http://dx.doi.org/10.1103/PhysRevD.98.074502
http://arxiv.org/abs/1807.08357
http://dx.doi.org/10.1103/PhysRevD.94.013008
http://arxiv.org/abs/1509.08507
http://arxiv.org/abs/1509.08507
http://arxiv.org/abs/1812.10504
http://dx.doi.org/10.1103/PhysRevD.97.014506
http://arxiv.org/abs/1710.01557
http://dx.doi.org/10.1103/PhysRevLett.116.192501
http://arxiv.org/abs/1512.07426
http://dx.doi.org/10.1103/PhysRevLett.72.1790
http://arxiv.org/abs/hep-ph/9306299
http://dx.doi.org/10.1103/PhysRevD.59.112001
http://dx.doi.org/10.1103/PhysRevD.59.112001
http://arxiv.org/abs/hep-ph/9806491
http://dx.doi.org/ 10.1103/PhysRevD.62.074501
http://dx.doi.org/ 10.1103/PhysRevD.62.074501
http://arxiv.org/abs/hep-ph/9910306
http://dx.doi.org/10.1016/S0370-2693(98)00677-7
http://arxiv.org/abs/hep-ph/9804416
http://dx.doi.org/10.1103/PhysRevD.73.014501
http://arxiv.org/abs/hep-lat/0507007
http://dx.doi.org/10.22323/1.251.0115
http://dx.doi.org/10.22323/1.251.0115
http://arxiv.org/abs/1603.07352
http://dx.doi.org/ 10.1103/PhysRevLett.118.242001
http://arxiv.org/abs/1703.01153
http://dx.doi.org/ 10.1103/PhysRevD.96.094513
http://arxiv.org/abs/1704.08993
http://dx.doi.org/ 10.1051/epjconf/201817514014
http://arxiv.org/abs/1710.11145
http://dx.doi.org/ 10.1103/PhysRevLett.110.262002
http://arxiv.org/abs/1305.1539
http://dx.doi.org/ 10.1103/PhysRevD.98.054028
http://dx.doi.org/ 10.1103/PhysRevD.98.054028
http://arxiv.org/abs/1806.00808
http://arxiv.org/abs/1811.07248
http://arxiv.org/abs/1811.00678


[162] Huey-Wen Lin, Jiunn-Wei Chen, Saul D. Cohen, and Xiangdong Ji, “Flavor structure of the

nucleon sea from lattice QCD,” Phys. Rev. D91, 054510 (2015), arXiv:1402.1462 [hep-ph].

[163] A. V. Radyushkin, “Quasi-parton distribution functions, momentum distributions, and

pseudo-parton distribution functions,” Phys. Rev. D96, 034025 (2017), arXiv:1705.01488

[hep-ph].

[164] Yan-Qing Ma and Jian-Wei Qiu, “Exploring partonic structure of hadrons using ab initio

lattice QCD calculations,” Phys. Rev. Lett. 120, 022003 (2018), arXiv:1709.03018 [hep-ph].

[165] Jiunn-Wei Chen, Luchang Jin, Huey-Wen Lin, Yu-Sheng Liu, Andreas Schäfer, Yi-Bo Yang,
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