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Abstract

We describe the impact that future lattice QCD calculationscan have on the determination
of the parameters of the standard model (quark masses, coupling constant, and particularly the
CKM matrix elements) and the search for new physics beyond. We consider the impact of
calculations requiring CPU resources ranging from what is possible by the end of 2007 (≈ 10
TFlop-yr with USQCD resources), through 50 TF-Yr and up to 500 TF-Yr.

We begin with a brief description of progress in the last 5 years and an overview of what
should be possible in the next 5 years, focusing on overconstraining the CKM matrix ele-
ments. Subsequent sections detail, respectively, the status and future of calculations of the
quark masses, the CPU time required for future ensembles of lattice gauge configurations, and
the status and future of calculations of electroweak matrixelements which constrain CKM el-
ements. We end with a summary and outlook.1

1 Introduction, history and overview

One of the central aims of calculations using lattice QCD is to determine the underlying parameters
of the Standard Model (SM) by stripping away the effects of the strong interactions. Lattice calcu-
lations aim to provide accurate determinations of the masses of the up, down, strange, charm and
bottom quarks2 the strong coupling constantαS, and the values of the weak transition couplings
between quarks—i.e. the elements of the Cabibbo-Kobayashi-Maskawa (CKM) matrix. These
quantities, along with the unknown Higgs mass and coupling,and the well known electroweak
coupling and mixing angle, are the parameters of theSU(3)×SU(2)×U(1) Lagrangian which
defines the SM. Particularly exciting is the possiblity of determining different, inconsistent values
of the CKM matrix elements from different decay processes. This would indicate a breakdown in
the Standard Model and thus the need for new physics. This approach is complementary to the
direct discovery searches to be undertaken at the Large Hadron Collider at CERN (LHC), but to be
successful requires reliable and precise lattice QCD calculations.

1Companion white papers discuss“Nuclear Physics from Lattice QCD: The Spectrum, Stucture and Interactions of
Hadrons”, ”Opportunities for Lattice QCD Thermodynamics with Petaflops Resources”, and“Challenges for lattice
field theory in the LHC era”.

2The top quark decays before it can form hadronic bound statesso lattice calculations are not needed for the
determination of its mass.
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The last five years have seen lattice QCD (LQCD) calculationsmature to the point that accurate
determinations of some of the fundamental parameters are possible, with all errors controlled (as
will be reviewed in sec. 4). Prior to this the methodology hadbeen developed, but calculations
had uncontrolled systematic errors, particularly due to the exclusion of the effects of light-quark
loops (the so-called “quenched” approximation). A key aspect of the recent progresss has been
the creation of an ensemble of gauge configurations generated including the full quantum measure
(“unquenched” or “dynamical” configurations including theeffects of light quark loops) with a
series of values for the lattice spacing (a) and the light quark masses.3 This ensemble uses “im-
proved” lattice fields (so as to reduce the discretization errors) and staggered fermions, and has
been generated by the MILC collaboration under the auspicesof the USQCD lattice collaboration.
It has been made available to lattice researchers worldwidewho have used it to calculate a wide
variety of physical quantities. Errors at the few percent level are possible in the best cases, and
the ensemble is being extended (to smallera, smallermℓ, and increased statistics) so as to allow
further improvements in accuracy.

In addition to these extensive lattice configurations generated using staggered fermions, there
are also an increasing number of lattice configuration generated using domain wall (DW) quarks.
This lattice fermion formulation yields accurate chiral symmetry for the quarks and directly pro-
vides the correct number of quark flavors. Available configurations have two lattice volumes but
a single lattice spacing. This DW fermion approach will be discussed further below, both as the
method of choice for computing particular weak matrix elements as well as an important test of
the results obtained using staggered fermions.

A crucial aspect of LQCD calculations is validation. There are many sources of error in the
calculations and, just as with experimental measurements,cross-checks using different methods
and comparison with known results must be used to validate the error estimates. Estimates of
statistical errors require a correct understanding of the correlations between configurations. Further
errors arise from fitting (e.g. of Euclidean correlation functions to a sum of exponentials) and from
the need to make extrapolations (in particulara → 0, mℓ → mphys

ℓ and box sizeL → ∞). The
methods used to simulate heavy quarks (i.e.b and, to some extent,c quarks) are approximate (e.g
non-relativistic QCD) and require theoretical estimates of errors. The calculation of electroweak
matrix elements require matching of continuum and lattice operators, which introduces a further
error. And, finally, in the case of staggered fermions an additional assumption is made, namely the
use of a rooted determinant to cancel the effects of the additional varieties (“tastes”) of fermion
that are intrinsic to this formulation. There are theoretical arguments that this approach yields
the correct continuum (a → 0) limit, but the required fitting is to complicated theoretical forms
(derived from “staggered” chiral perturbation theory), and numerical validation is essential.

Validation has been carried out to date by comparing predictions for those quantities which
are calculable with the smallest errors. The number of such quantities increases with time, and
Fig. 1 gives a recent update [1] on the original figure [2]. Thefigure shows that the quantities
used are sufficiently sensitive to quark loops to provide a stringent test of the methodology. In
particular, including quark loops one finds agreement within errors of size 1-3%, while calculations

3Calculations to date are in the isospin symmetric limitmu = md = mℓ, but have the strange quark mass,ms, at (or
close to) its physical value. The simulated values ofmℓ are larger than the physical average light quark mass, but range
down tomℓ/ms ≈ 1/10, which approaches the physical ratio of≈ 1/27.
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using the quenched approximation find deviations of∼ 10% from experiment. The agreement of
unquenched results tests both heavy and light quark methodologies as well as the running of the
coupling constant between the heavy and light quark scales.
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Figure 1: Ratio of lattice results to those from experiment.Left panel uses quenched and right
panel unquenched (2+1 flavor) lattice calculations.

Another crucial validation is provided by the successful comparison of the strong coupling
constant obtained from lattice calculations.αS(mZ) = 0.1170±0.0012 [3], with the world average
from other methods (in whichαS is determined by matching perturbative QCD predictions to
collider results at high energies)αS(MZ) = 0.1185±0.0015.4 This comparison is also shown in
Fig. 1.

Perhaps the most convincing test of methods is to make successful predictions in advance of
experimental measurements. Three such predictions have been tested to date: the mass of theBc
meson, the decay constant of theD+, and the shape and normalization of theD → K semileptonic
form factor. All three were successful [5]. These comparisons are not, however, at the level of
precision of those discussed above. Both experimental and lattice errors for theD andDs decay
constants and form factors are presently of order 6 to 10%. The experimental errors are typically
statistics-limited and may drop by a factor of∼ 2 over the next few years. It it therefore crucial that
the lattice errors also be reduced by a similar factor. Computation of these quantities is discussed
in more detail in sec. 4.

We note also that lattice calculations have led to controlled predictions of quark masses, with
those of the light quarks being the most precise. This will bediscussed in sec. 2. Although the
connection between quark masses and experimental observables is subtle, pinning down these
fundamental parameters is a notable success, and feeds intothe details of unification schemes
involving new physics.

4This number is obtained from Ref. [4] with the lattice resultdropped from average.
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A final success, albeit a more qualitative one, concerns the calculations of electroweak matrix
elements needed to constrain the CKM matrix. Three constraints that rely solely on lattice methods
are (i) the kaon B-parameterBK, which determines the CP violating part of theK −K mixing, εK;

(ii) the matrix elementfBs

√
B̂Bs, which controls the rate ofBs−Bs mixing; and (iii) the ratioξ

(defined in sec. 4) which determines the relative size ofBs−Bs andBd −Bd mixing. Early lattice
estimates for these quantities (as collected in Ref. [6] in 2000 and given in the second column
of Table 1 below) led (along with other theoretical and experimental input) to predictions for the
CKM angleβ (see the Appendix for notation for the CKM matrix) andBs−Bs mixing,

tan(2β) = 0.698±0.066, ∆ms = (16.3±3.4)ps−1 , [Lattice Pred. (2000)] (1)

that are in agreement with the subsequent experimental measurements [7, 8],

sin(2β) = 0.674±0.026, ∆ms = (17.77±0.12)ps−1 , [Experiment (2006)] (2)

This success has been important in convincing the wider particle physics community of the utility
of lattice calculations [9].

Hadronic Quenched Lattice UTA Lattice Lattice
Matrix Estimate Result Result Errors Errors

Element in 2000 Current Current 10. TF-Yr 50. TF-Yr

B̂K 0.87±0.15 0.77±0.08 0.75±0.09 ±0.05 ±0.03

fBs

√
B̂Bs 262±40 MeV 282±21 MeV 261±6 MeV ±16 MeV ±9 MeV

ξ 1.14±0.07 1.23±0.06 1.24±0.08 ±0.04 ±0.02

Table 1: History, status and future of lattice QCD calculations of three matrix elements which play a key role in
the determination of CKM matrix elements. Quenched estimates from 2000 taken from Ref. [6], UTA values from
Ref. [9, 10]. Present results are from Refs. [11, 12] (BK), [13] ( fBs

√
BBs), and [14] (ξ), and will be discussed further

in sec. 4. Note that none of the present lattice results include fully controlled estimates of all errors.

A major focus of the USQCD calculations in the last five years has been the improvement
of electroweak matrix calculations. A more extensive status report is given in sec. 4 below, but
here we describe the progress of calculations of three matrix elements which play a key role in
constraining the SM. Table 1 shows how present lattice results (third column) compare to the
estimates from 2000. The main progress has been the use of unquenched, 2+ 1 flavor gauge
configurations instead of the quenched approximation (except for ξ, for which the present result
is based on partially unquenched [2 light flavor] ensembles). While this progress shows up as a
reduction in the errors, what cannot be seen from numbers alone is that thereliability of the error
estimates has improved (since, except forξ, it is now no longer necessary to estimate the impact
of quenching, which can be done, at best, semi-quantitatively). Nevertheless, there are as yet no
unquenched calculations of the matrix elements having all errors are controlled. For example, fully

unquenched results for̂BK and fBs

√
B̂Bs are available only at one lattice spacing and volume, so

that discretization and finite volume errors are estimated from previous partially unquenched, or
quenched, calculations or using theoretical arguments, and are not yet directly calculated.
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There are three main reasons why calculations of matrix elements like these three lag behind
those of the quantities discussed above that have been used for validation and prediction. First, they
are more complicated to calculate: they involve four-fermion operators rather than bilinears, and,
in some cases, non-trivial operator mixing. Second, there is a non-trivial overhead in CPU (and
human) time required to progress from the generation of gauge configurations to the calculation of
the valence propagators required to extract the matrix elements. And, third, there is a theoretical
overhead needed to understand operator mixing and determine the appropriate functional forms
to use when doing chiral extrapolations. The net result is that matrix element calculations lag the
generation of configurations by one or two years. In fact, in the case ofBK, a light-quark quantity
for which chiral symmetry plays an important role, calculations using DW fermions have leap-
frogged those using staggered fermions, although (as discussed below) the DW ensemble is only
in the early stages of completion.
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Figure 2: Present constraints on̄ρ and η̄ from the UTA analysis (left panel) and from matrix
elements involving lattice QCD input (right panel). Contours of 68% and 95% probability are
shown, together with the 95% probability regions from individual constraints. Consistency of the
allowed regions in the two panels provides precision confirmation of the SM. From Ref. [9].

In the last 5 years, there has been tremendous progress in experimental measurements ofB-
meson properties. This has allowed a determination of the CKM elements using methods that
require little or no knowledge of hadronic matrix elements,and, in particular, no input from lattice
calculations. Following Ref. [9], we call this the Unitarity Triangle-Angles (UTA) approach. Its
status is shown in the left panel of Fig. 2. Combining the results with the measured values forεK,
∆md and∆ms allows one topredictthe values of three matrix elements discussed above (assuming
that the SM is correct). The results are given in the fourth column of Table 1.5 The agreement
between present UTA and lattice results shows that the SM description of flavor physics, including
CP violation, is consistent with experiment. An alternative way of seeing this consistency is to

5In this article we use the UTfit collaboration analysis of unitarity triangle constraints as results are given of direct
relevance to the needed precision of lattice calculations.See the CKM fitter web site for an alternative approach to
imposing the constraints, which leads to similar conclusions [15].
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compare the constraints on̄ρ and η̄ from the two approaches, as is done in Fig. 2. It should be
stressed that the agreement is a highly non-trivial test of the SM, involving both electroweak and
strong-scale physics.

This comparison shows, furthermore, that the next 5 years presents a tremendous opportunity.
If the errors in lattice results can be reduced to a level below those of the UTA predictions (which
will themselves be gradually reduced), then there is the potential for stringent tests of the SM.
The first stage is to obtain lattice results with all errors controlled, and this should occur in the
next year (i.e. by the end of 2007) doing analyses on existingunquenched ensembles. Our esti-
mated errors are given in the Table in the “10 TF-Yr” (10 TeraFlop-Year) column—this is roughly
the accumulated computational resource that will have beendevoted to the calculation (including
configuration generation) by the USQCD collaboration by theend of 2007. The basis for these
estimates is described in sec. 4. The needed calculations will likely use both staggered and DW
fermions. The expected errors in̂BK andξ are smaller than the present UTA errors, while those

in fBs

√
B̂Bs are larger (although comparable). All errors can be furtherreduced by using a more

extensive ensemble (utilizing both staggered and DW fermions). As an example, we give esti-
mates for an accumulated CPU time of 50 TF-Yr. At this stage, the theoretical errors are at the few
percent level, allowing precision tests of the SM.

These estimates show that, for these three key matrix elements, resources at the 50 TF-Yr level
allow one to reach the same level of precision as has already been attained for simple quantities.
There are, however, many other matrix elements that can provide constraints on both the SM and
on theories proposed for physics beyond.6 Many of these matrix elements are more complicated
than the three discussed in this section, and will require greater computational resources to obtain
precision results. We discuss the range of such quantities in sec. 4 below. Preceeding that, we first
describe recent progess on the calculation of quark masses,and then discuss the computational
requirements for possible future ensembles of gauge configurations.

2 Status and future of lattice results for quark masses

Unquenched calculations of light hadron properties have progressed to the point that the light
quark masses can be determined with precision. The present calculation uses light quark masses
down to mℓ/ms = 0.1 at three lattice spacings (a ≈ 0.15, 0.12, 0.09fm) and also includes first
results ata≈ 0.06fm (with mℓ/ms = 0.4). Preliminary results from this ensemble and using two-
loop perturbative matching factors are given in Table 2 under the heading “2006 result”. Also
shown are earlier results using only parts of the presenta≈ 0.12fm and 0.09fm ensembles (with
mℓ/ms values down to 1/10 and 1/5, respectively), and either one-loop (listed as “2004 result”)
or two-loop perturbation theory (listed as “2005 result”).Errors are from statistics, simulation
systematics, the truncation of perturbation theory for matching factors, and incomplete inclusion
of electromagnetic effects, respectively.

6In this white paper we consider only the QCD calculations that are needed to constrain beyond the standard model
(BSM) physics. A separate white paper (“Challenges for lattice field theory in the LHC era,”) is devoted to direct
calculations in possible BSM theories.
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Quark mass 2004 result 2005 result 2006 result

mℓ/MeV 2.8(0)(1)(3)(0) 3.2(0)(2)(2)(0) 3.3(0)(2)(2)(0)

mu/MeV 1.7(0)(1)(2)(2) 1.9(0)(1)(1)(2) 2.0(0)(1)(2)(1)

md/MeV 3.9(0)(1)(4)(2) 4.4(0)(2)(2)(2) 4.6(0)(2)(2)(1)

ms/MeV 76(0)(3)(7)(0) 87(0)(4)(4)(0) 90(0)(5)(4)(0)

Table 2:History of recent results for light-quark masses using improved staggered fermions. 2004 results are from
Ref. [16, 17], 2005 results from Ref. [18], and 2006 results from Ref. [19]. Heremℓ = (mu + md)/2, and all masses
are quoted in theMS scheme at a renormalization scale of 2GeV. Details are discussed in the text.

The main conclusion is that lattice calculations have provided, for the first time, accurate results
for quark masses. In particular, the overall scale of the quark masses has turned out to be smaller
than pre-lattice estimates suggested (e.g.ms ≈ 150MeV). The resultmℓ/ms = 1/27.1±0.4 for
the SU(3)-breaking ratio is in complete accord with estimates using chiral perturbation theory
and other model input. It should be mentioned, however, thatpartially unquenched calculations
with Wilson-like fermions find somewhat higher quark masses[20], so it is important to check the
results from staggered fermions with other lattice fermions. This will be done over the next few
years, in particular using DW fermions.

Table 2 shows that, after the first unquenched result became available in 2004, subsequent im-
provements have been largely due to the use of more accurate matching factors. In particular, the
increase in central values between 2004 and 2005 is due to inclusion of the two-loop contribu-
tion. The use of a larger ensemble, with smaller values ofa andmℓ, has provided an important
consistency check, but the statistical power of the additional lattices is insufficient to reduce the
extrapolation errors.

Future work is planned in three directions. First, the use ofnon-perturbative renormalization
to calculate the matching factors, thus replacing an estimated truncation error with a known, and
smaller, statistical error. Second, the use of smaller lattice spacings and masses to reduce the sys-
tematic errors. And, finally, the use of DW and possibly otherfermion actions. In this way, results
with few percent accuracy should be possible in the next 5 years. These extended calculations will
also allow a much more significant improvement in the determination of the unknown coefficients
which appear in the QCD effective chiral Lagrangian (e.g. the Gasser-Leutwyler coefficients).

There has also been considerable progress on calculations of mc andmb.7 Unquenched results
using the MILCa≈ 0.12 and 0.09fm lattices have been obtained, using both the Fermilab action
(for c andb quarks) and NRQCD (for theb quark). The former results aremc = 1.22±0.09GeV,
mb = 4.7±0.4GeV [21], while the latter aremb = 4.4±0.3GeV [22], in both cases using one-
loop matching factors. These are consistent with the PDG averages excluding lattice input:mc =
1.24±0.09GeV andmb = 4.20±0.07GeV [4]. This validates the lattice heavy-quark methodology
at the level of 10% precision.

7In the following these quark masses are quoted in theMS scheme at the scale of the corresponding mass.
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It is important to improve the accuracy the calculations of heavy quark masses, both to provide
more precise validation and because these masses are fundamental parameters in the SM. For the
approaches used to date, the dominant error arises from the truncation of perturbation theory, so
further progress requires theoretical, rather than numerical, work. This is, however, unlikely to
lead to precision at the percent level. For this one likely needs to use non-perturbative matching,
which has been implemented in pilot quenched studies for both charm [23] and bottom quarks. [24]
Another approach is to use highly improved staggered fermions [25].

3 Future ensembles of configurations

Key factors determining the future progress of LQCD calculations are the size and parameters of
the ensembles of gauge configurations that can be generated.In particular, what values ofa, mℓ

andL are attainable? In this section we describe what is likely tobe possible in the next 5 years.
We focus on staggered and DW fermions, which are likely to be the primary choice for flavor-
related calculations in this period. Staggered fermions are fast, but require complicated fitting and
theoretical analysis to deal with the extra tastes. DWF are (relatively) slow to simulate, but the
analysis required for most quantities is continuum-like and straightforward, and their enhanced
chiral symmetry is important for many quantities related toflavor physics. It is also possible that
other fermion actions will be used for flavor-physics calculations, e.g. improved Wilson fermions.
The distribution of resources will be adjusted yearly by thecollaboration, based on the results
and projects proposed to the collaboration, so as to maximize the production of validated, precise
results for important quantities. It should also be kept in mind that the required balancing includes
the division of resources between the flavor physics aims discussed in this white paper, and other
aims of USQCD, in particular hadronic and nuclear physics, finite temperature/density QCD, and
BSM physics.

As noted above, the present staggered fermion ensemble includes lattices ata = 0.15, 0.12,
0.09fm with light masses ranging down tomℓ/ms ≈ 0.1, as well as partial sets ata = 0.06 with
mℓ/ms = 0.4 and 0.2. Table 3 shows the cost of extending this ensemble to smaller a andmℓ/ms.
The labels (borrowed and extended from our 2004 white paper [26]) indicate how one might
progress stepwise as CPU resources increase. MILC1 latticegeneration should be completed be-
fore the end of 2007, to be followed by MILC2 generation, etc.Each step involves a reduction in
a, or in mℓ/ms, but not both, and requires an increase in CPU time ranging from 2-9.

An important and very welcome result shown in the table is that the CPU estimates from 2004
have proven to be too high by factors of 3-10. This is due to twofactors. First, the use of the
rational hybrid Monte-Carlo (RHMC) algorithm [27] insteadof the R-algorithm, which reduces
the CPU time by factors 2− 6 for the quark masses in the table (with the reduction increasing
with smallermℓ).8 Second, the earlier estimates used asymptotic formulae which proved overly
conservative in practice. The combined improvements bringthe possibility of a direct simulation
of physical quark masses significantly closer.

8In practice for the staggered fermion evolutions the final accept-reject step is dropped from the RHMC algorithm,
leading to what is called the rational hybrid molecular dynamics (RHMD) algorithm.
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a (fm) mℓ/ms Size L (fm) MC traj. TF-Yr TF-Yr Label
R-2004 RHMD-2007

0.09 0.10 403×96 3.6 3000∗ 1.5 0.14 MILC1

0.09 0.05 563×96 5.0 4200 23 1.2 MILC2

0.06 0.20 483×144 2.9 3750† 1.9 0.7 MILC1

0.06 0.10 643×144 3.8 4500 22 2.4 MILC2

0.06 0.05 843×144 5.0 6300 280 19 MILC3

0.06 1/27 1003×144 6.0 7454 – 55 MILC4

0.045 0.40 563×192 2.5 4000 – 1.1 MILC2

0.045 0.20 563×192 2.5 5000 10 3.0 MILC2

0.045 0.10 803×192 3.6 6000 135 14 MILC3

0.045 0.05 1123×192 5.0 8400 2100 130 MILC4

0.045 1/27 1243×192 5.6 9940 – 320 MILC5

Table 3: CPU requirements (in TFlop-years) for future generation ofunquenched configurations with improved
staggered (“asqtad”) fermions. Lattice sizes are chosen sothat finite volume effects are roughly constant (and small).
“MC traj.” gives the lengths of the runs (in number of trajectories)—these are chosen so that statistical errors should
be sub-dominant for quantities of interest. An asterix indicates that generation is complete, while a dagger that it is
underway. The present estimates (labelled 2007) assume theRHMD algorithm. For comparison, we give the estimates
(labeled 2004) from our 2004 white paper [26] (appropriately scaled for changes in lattice size and trajectory lengths),
which assumed the R algorithm and conservative extrapolations. All estimates are for two degenerate light quarks of
massml and a strange quark at its physical mass. The ratioml/ms = 1/27 is the physical value. The labels indicate a
progression of increasingly demanding calculations, and are used in the text.

To estimate the resources needed to progress to each stage ofthis program one must include not
only the configuration generation but the significant time required to calculate valence propagators.
We have previously multiplied by a factor of 2 to account for this, but here use the factor of 4. This
increase is appropriate because some of the algorithmic advances do not carry over to propagator
calculations, and because of the increasing number of quantities that are being be calculated. With
this factor, the costs of the stages are roughly as follows:

MILC1: 4 TF-Yr; MILC2: 30 TF-Yr; MILC3: 100 TF-Yr; and MILC4:750 TF-Yr. (3)

In assessing these numbers, it should be kept in mind that these estimates apply for calculations
focused on fundamental parameters alone. Such calculations use 1/3-1/2 of USQCD resources,
with the remainder focused on spectroscopy, finite temperature calculations, and nucleon structure
and interactions.

An important feature of the RHMC algorithm is that there is essentially no additional cost if
one simulates with non-degenerateu andd quarks. Thus the estimates formℓ/ms ≈ 1/27 apply
as well to simulations with all three light quarks at their physical values.9 Direct simulations with

9The pion masses are essentially the same for degenerate or non-degenerate light quarks, so one does not need to
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physical light quarks are thus attainable once resources reach the PetaFlop level. These would
represent a major milestone, avoiding the need for chiral extrapolations, but requiring the inclusion
of electromagnetic effects.

Estimates of required CPU time for configuration generationwith DW fermions are given in
Table 4. In this case we do not have earlier estimates to compare to, but it should be noted that in
the last two years a speed-up in DWF codes by about a factor of 6has been achieved by algorithmic
and coding work [27]. The timing estimates are made by extrapolations from present simulations,
which are currently being run and analyzed on lattices of spacing a = 0.122 and 0.093 fm. The
tables show that the CPU cost is 10-20 times more for DW than for staggered fermions.

a (fm) mℓ/ms Size L5 L (fm) MC traj. TF-Yr Label

0.12 0.3 243×64 16 3.0 9000† 0.7 DWF1

0.12 0.19 243×64 16 3.0 9000† 0.8 DWF1

0.09 0.20 323×64 16 3.0 4500 1.3 DWF1

0.09 0.136 323×64 16 3.0 4500 1.4 DWF2

0.09 0.136 483×64 16 4.4 5000 7.0 DWF2

0.09 0.065 483×64 16 4.4 5000 8.6 DWF3

0.09 1/27 643×128 24 5.9 10000 230 DWF5

0.06 0.144 483×64 16 3.0 10000 18 DWF3

0.06 0.084 643×128 16 4.0 10000 130 DWF4

0.06 1/27 963×128 16 5.9 10000 680 DWF6

Table 4:CPU requirements for future lattice generation of unquenched configurations with DWF using the RHMC
algorithm [27]. Notation as in tab. 3, except that earlier estimates are not available, and thatL5 is the number of sites
in the fifth dimension.

The labels indicate an analogous progression to that for staggered fermions, with the resources
needed for DWF1 roughly corresponding to those for MILC1, etc. The present ensemble (DWF0)
consists of lattices ata = 0.122 fm, withmℓ/ms ≥ 1/7, and spatial sizes ofL = 2 and 3 fm. The
DWF2 level is particularly important because there will then be two lattice spacings and small
quark masses so all extrapolations (and corresponding errors) should be controlled. This is thus
the threshold for precision predictions from DWF. Note that, although the progression for DWF in
terms ofaandmℓ lags that for staggered fermions due to the extra CPU cost, this is counterbalanced
by the simplified fitting, improved chiral symmetry, and possibly by smaller discretization errors.
At the DWF2 stage, which is attainable when total resources applied to flavor physics are of order
50 TF-Yr, we will have precision results with both staggeredand DW fermions. This is a very
important milestone both because it allows a crucial check of the methods and thus the predictions,
and because it will allow a considered decision on which fermion method to pursue for subsequent
calculations.

increase the physical volume or expect longer decorrelation times. Note that although the rooting method breaks down
for a massless quark [28], the physical masses are likely positive enough for this not to be a problem [29, 30].
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4 Future calculations of electroweak matrix elements

In this section we list the most important matrix elements ofelectroweak operators that can be
calculated using LQCD, describing in some detail the signficance, status and future prospects for
each. We proceed roughly from the best to the least well known.

In describing some of the following results it is useful to introduce some notation for different
subsets of the present MILC ensemble. We call thea = 0.12fm anda = 0.09fm lattices the
“coarse” and “fine” MILC lattices, respectively. Some calculations have been done only on the
coarse lattices, others on the coarse and a subset of the fine (with mℓ/ms down to 0.2). We call
the latter collection the “MILC0” ensemble. The most up-do-date calculations use also the fine
lattices withmℓ/ms = 0.1, and thea= 0.06fm,mℓ/ms lattices—we refer to these together with the
MILC0 lattices as the “present MILC ensemble”.

We stress that the best fermion discretization to use depends on the quantity, and that, as the fol-
lowing descriptions show, a mix of staggered and DW fermion calculations is likely to be optimal
for the next few years.

The notation for CKM matrix elements is summarized in the Appendix.

4.1 Bilinear matrix elements

• fπ and fK . These quantities have been used for validation of lattice methods in the light
meson sector by comparing to the experimental leptonic decay rates. They can be calculated
to good accuracy, with errors of size 2.6% using staggered fermions on the present MILC
ensemble [19]. Some errors cancel in the ratiofK/ fπ, in which the present error is about
1%.

Although these are among the most accurate results from LQCD, it is important to further
reduce the errors. Improving the calculation offπ will allow more precise validation. (The
CKM element which enters,Vud, is known to very high accuracy from nuclear decays.) This
is particularly important for staggered fermions, in orderto test whether the complications
due to taking roots of the determinant are understood. Another important test, which can
be done at unphysical quark masses to avoid chiral extrapolations, is to compare precision
results obtained with staggered and DW fermions.

The ratio fK/ fπ can be used to determineVus, the present value leading to

|Vus| = 0.2223

(
+26
−14

)
(Lattice fK/ fπ) . (4)

This has comparable errors to that from the standard method using semileptonicK → π de-
cays (discussed below): 0.2257(21) [4]. Thus further improvements in LQCD calculations
of fK/ fπ will lead to an improvement in the present determination ofVus. This is of consid-
erable interest since it would allow a more stringent test ofthe unitarity of the first row of
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the CKM matrix. Present results are

|Vud|2+|Vus|2+|Vub|2 = 0.9992(5)(9)(0) [PDG06] or 0.9977(5)(12)(0) [LatticeVus] , (5)

with the errors coming, respectively, from those inVud, Vus andVub. Both results are con-
sistent with unitarity, but the larger deviation of the central value from unity when using the
latticeVus provides particular motivation to reduce the lattice error.

We can roughly estimate how errors will be reduced in calculations using staggered fermions.
This will serve as the standard for subsequent estimates so we provide some details. The
dominant errors infπ come from setting the scale and from the combined chiral-continuum
extrapolation. In the detailed 2004 MILC study [17] (which used a somewhat smaller en-
semble than the present best results, and had slightly larger errors), these errors were 1.8%
and 1.9% respectively. Both errors are reduced by extending the ensemble so as to improve
chiral and continuum extrapolations, though the scale error will likely be reduced less as it
has a weaker dependence on the light quark mass (being based on calculations of theϒ spec-
trum). We estimate a reduction of the scale error by 0.8 and 0.6 for the MILC1 and MILC2
stages, respectively, and corresponding reductions by 0.7and 0.5 in the extrapolation error.
This leads to a combined systematic error of 2.0% and 1.4% infπ (and fK) at the MILC1
and MILC2 stages, respectively. We expect the statistical error to remain at about the present
level of 0.3%, and thus to be subdominant.

For the ratio fK/ fπ, there are essentially no scale errors, and we expect the extrapolation
error to reduce as forfπ. The 1% extrapolation error in Ref. [17] is thus estimated tofall to
0.7% and 0.5% in the MILC1 and MILC2 ensembles, respectively. This will likely remain
dominant over the statistical error (0.2% at present). These reductions would lead to consid-
erably more stringent test of unitarity. For example, if thecentral value offK/ fπ remained
unchanged, the unitarity sum would become 0.9977(5)(6)(0) = 0.9977(8) at the MILC2
stage, a 3-σ effect.

DWF calculations will also give precision results forfπ and fK. At this stage, it is diffi-
cult to estimate the likely errors, since first results from unquenched simulations have just
been presented, and are only at a single lattice spacing [31]. One complication is that the
renormalization constantZA, which is unity with staggered fermions, must be determined
non-perturbatively from the simulations. It is therefore very encouraging that the results for
ZA using non-perturbative renormalization have extremely small errors (0.03% or less).

• K → πℓν form factor. This is needed to convert the experimental measurement of the semi-
leptonic decay rate to a determination ofVus. The PDG uses the Leutwyler-Roos value from
model calculations,f+(0) = 0.961(8), but notes that there is a possible 2% theoretical un-
certainty in this number, which is not included in the PDG error for Vus [4]. An accurate
lattice result would greatly improve upon this situation. Lattice results with sub-percent
level precision are possible here through the use of appropriate ratios [32]. Indeed, first un-
quenched results using DWF ata≈ 0.125fm, andmℓ/ms = 0.25−0.75, have statistical and
estimated chiral extrapolation errors each of≈ 0.001 in f+, with continuum extrapolation
errors estimated to be smaller [33]. It is crucial to check these estimates by calculations at
smallermℓ/ms anda, and this will be possible using the DWF1-2 ensembles. If confirmed,
the error inVus will become dominated by that from the experimental measurement, which
contributes≈±0.0009 toVus at present (i.e. somewhat less than half of the present totalerror

12



of ±0.0021). This would lead to a unitarity test of comparable precision to that envisioned
above fromfK/ fπ.

Calculations with staggered fermions are also possible, although a preliminary unquenched
result has considerably larger errors than obtained with DWF [34].

• D → (K,π)ℓν form factors. These can be used together with the measured semi-leptonic
decay rates to determineVcs andVcd, respectively. Lattice results allow prediction of the
differential cross-section, thus allowing a detailed comparison with experiment. The success
of this comparison forD → Kℓν is one of three successful lattice predictions noted in the
introduction.

Further work on these calculations is of considerable interest. Accurate determinations of
Vcs andVcd would allow a precision unitarity test from the second row ofthe CKM matrix
(sinceVcb is known to be small). Lattice calculations can contribute most usefully to the
determination ofVcs, which is only known with an error of≈ 30% from neutrino scattering.
An unquenched calculation using Fermilabc quarks and staggered light quarks on the coarse
MILC lattices yieldsVcs = 0.957(17)(93), where the first error is from experiment and the
second from the lattice calculation [35, 4]. Discretization errors dominate the lattice uncer-
tainty, and should be substantially reduced, as well as firmed up, by extending the calculation
to the full present MILC ensemble.

Vcd is known most accurately from neutrino scattering:|Vcd| = 0.230(11). The error is
less than half that obtained using the lattice form factor from coarse MILC lattices,|Vcd| =
0.213(8)(21), where the first error is from experiment and the second from the lattice [35, 4].
If the lattice error could be reduced below that of experiment, then this would become com-
petitive with the neutrino scattering method. This should be possible using the envisioned
MILC ensembles. Alternatively, one can view this as a moderate-precision test of lattice
methods for charmed quarks.

Calculations using DWF both for the charm and light quarks are also envisaged in the future.

• fDs and fD. These quantities provide important validation of latticemethods for heavy
quarks, by comparing predicted and measured semileptonic decay rates of theDs andD+

(usingVcu from neutrino scattering andVcs from unitarity). In the case of theD+, the un-
quenched lattice prediction preceeded the first measurement. Experimental results from the
CLEO collaboration are statistics limited and are at present [36]

fD+ = 223(17)(3)MeV, fDs = 282(16)(7)MeV, fDs/ fD+ = 1.27(12)(3) , (6)

with errors being statistical and systematic, respectively. The unquenched lattice calculations
using Fermilabc quarks and staggered light quarks on the MILC lattices give

fD+ = 201(3)(17)MeV, fDs = 249(3)(16)MeV, fDs/ fD+ = 1.21(1)(4) , (7)

where the first two results use the MILC0 ensemble [37] while the ratio is a recent update
using more of thea= 0.09fm lattices [38]. The method relies on a partially non-perturbative
normalization of currents [39].

It is important to improve the lattice calculation, since the experimental errors are likely
to fall with time. The dominant lattice uncertainties come from charm quark discretization
errors and the chiral extrapolation, both of which can be substantially reduced by reducinga
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andmℓ. We expect roughly a 50% reduction in the lattice error by theMILC2 stage, giving
a total lattice error of≈ 5% in the decay constants and≈ 2% in their ratio.

• fBs and fB. These quantities have long served as benchmarks for the progress of lattice
methods for heavy-light systems. A recent development is the direct measurement of the
B→ τν branching ratio, allowing a determination offB given a value forVub. The errors in
this measurement, presently about 35%, are unlikely to become small enough for a precision
test of methods, although the measurement does provide a consistency check.

Unquenched results are available using staggered light quarks and both NRQCD and the
Fermilab action to simulate theb quark [40, 41, 42]. The dominant error is from perturbative
matching—using one-loop results the error is estimated to be ≈ 9% out of a total error of
≈ 10%. The matching error cancels in the ratiofBs/ fB, which is known to≈ 3%. These
calculations use the MILC0 ensemble. Significant improvement will require higher order
matching. A longer-range alternative method offering higher precision uses HQET and the
1/mb expansion for theb quark [43], an approach in which non-perturbative matchingis
possible. This approach is at an earlier stage of development, however, with no unquenched
results available. A related approach is presented in Ref. [44].

• B→ (D,D⋆)ℓν form factors. Combined with experimental measurements, these allow a de-
termination ofVcb. Using the double-ratio method to cancel matching factors [45], and with
confidence in the heavy-light methods provided by validation from decay constant calcula-
tions, percent-level accuracy is possible. This has been achieved for theB → D case [46],
where unquenched results have errors smaller than those of experiments. The best data, how-
ever, are for theB→ D⋆ decays, where no unquenched result is yet available. The necessary
staggered heavy-light chiral perturbation theory has beencompleted [47] and results with
all errors controlled should be available in 2007 [48]. Thiswill provide a very important
check on the result forVcb from inclusiveb → c decays analyzed using HQET and short-
distance methods. The latter is projected to ultimately reach 1% accuracy, and to match this
the MILC2 ensemble will likely be needed.

• B→ πℓν form factors. These can be calculated for largeq2 (so that~pπ is small in theB rest
frame) and used to extractVub. This provides one of the key constraints on theρ̄− η̄ plane.
Results using NRQCDb quarks and staggered light quarks with all errors controlled are
available [49]. The total error is≈ 12%, dominated by matching (≈ 9%) and statistics/chiral
extrapolation (≈ 8%). The experimental error (usingq2 > 16GeV2) is smaller,≈ 6%. One
can also use data from smallerq2 either by using QCD sum-rule results for the corresponding
form factors or including the constraints of unitarity. Thepresent results for 103×Vub from
two independent analyses are 3.85+0.67−0.49 [4] and 3.50±0.40 [10].

It is particularly interesting to improve this calculation, because there is tension with the
result from inclusiveb → u decays (to which lattice calculations do not contribute): two
independent analyses find 103×Vub to be 4.4±0.2±0.27 [4] or 4.49± 0.33 [7, 10]. An
important goal is thus to reduce the lattice error in the formfactor by a factor of 2 (down
to the level of the experimental error). At this stage exclusive and inclusive methods would
have comparable errors and the significance of the present tension would be much clearer.
To achieve this two-loop matching and the use of at least the MILC1 ensemble is needed.
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4.2 Four-fermion matrix elements I: well studied examples

As noted above, these matrix elements involve operator mixing and more complicated contractions,
and tend to lag calculations of bilinear matrix elements by 1-2 years.

• BK. This is defined through

8
3

m2
K f 2

KBK = 〈K̄|s̄γµ(1− γ5)ds̄γµ(1− γ5)d|K〉 . (8)

and determines the CP violating part of theK0 ↔ K̄0 mixing amplitude. The latter is param-
eterized by the measure quantityεK, which is predicted in the SM to be (see e.g. Ref. [6])

|εK| = CεA
2λ6η̄

[
η2S(xt)A

2λ4(1− ρ̄)+charm−contribs
]
B̂K . (9)

HereB̂K is the renormalization-group invariant B-parameter,

Cε = G2
F f 2

KmKm2
W/(6

√
2π2∆mK) , (10)

is a well measured combination of quantities, andη2 is a QCD Wilson coefficient, known
to next-to-leading-order (NLO). Only the dominant top quark loop contribution is shown.
Knowledge ofBK thus constrains the allowed region in thēρ − η̄ plane, or, conversely,
knowledge ofρ̄ andη̄ constrainBK.

In particular, using direct measurements of the UT angles (from exclusive hadronicB de-
cays), and eq. (9), one finds the constraint given in Table 1:B̂K = 0.78±0.09 [10]. A lattice
result with an error at or below this level will serve to constrain the SM.

As noted in the introduction, there is as yet no complete calculation ofBK with all errors con-
trolled. The state-of-the-art uses DWF ata≈ 0.125fm andmℓ/ms down to 0.25, and NPR
for matching. This is a precision calculation, with statistical errors and matching uncertain-
ties each≈ 2% [11]. What is lacking is a complete estimate of the errors due to chiral and
continuum extrapolations. Taking the conservative estimate of these from Ref. [12] gives
B̂K = 0.77±0.02±0.08. This second error can be replaced by a controlled (and likely much
smaller) error by the use of smallermℓ and a second value fora. This should be provided by
the DWF1 ensemble, and leads to the estimated error of±0.05 in the “10 TF-Yr” column of
Table 1. Further reduction in systematics will occur upon reaching the DWF2-3 stages, and
we estimate an error of±0.03 when resources reach 50 TF-Yr.

It is necessary to have cross-checks on calculations of suchimportant quantities, and fortu-
nately this will be provided by at least two other methods. One uses valence DWF on MILC
lattices, determining the form of mixed-action errors using chiral perturbation theory [50].
Results on the MILC0 data set should be available in 2007, andshould have errors similar to
those with the DWF1 ensemble.

A second approach uses valence staggered fermions on the MILC lattices [51, 52]. It suffers
from the extra systematics of taste-breaking, but gains from smaller CPU requirements. The
main drawback is the need, at this stage, to use one-loop perturbative matching, which limits
the accuracy to≈ 10% on the MILC0 ensemble. Two-loop, or non-perturbative, matching
will be needed to make this method competitive.
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• fBs

√
BBs.

10 BBs is defined in an analogous way toBK, eq. (8). The combinationfBs

√
BBs

appears, squared, in theBs−Bs mass difference

∆Ms =
G2

FM2
WMBs

6π2 ηcS(xt)|VtsVtb|2 f 2
Bs

BBs , (11)

whereηc is a perturbative coefficient known at NLO. Since∆Ms is now well measured (at the
2% level) this provides an indirect determination of|Vts|, which is predicted to high accuracy
by the unitarity of the CKM matrix,Vts =−Aλ2+ . . .. That it provides a potentially stringent
test of the SM is shown by the accuracy of the UTA predictionfBs

√
BBs = 261±6MeV [10].

Thus it is very important to reduce the present error of±21MeV (7.5%).

As indicated in Table 1, substantial progress is possible with future ensembles. The present
calculation uses only (a subset of) coarse MILC lattices, and NRQCD for theb quark [13].
The next step is to use the MILC0 ensemble, including the fine lattices, which we estimate
will reduce the error to≈ 6%, or±16MeV.11 This should occur during 2007. The most
important subsequent improvement would be the use of two-loop matching. Combining
this with the reductions in other errors that should be possible by working on the MILC2
ensemble we estimate a total error of±9MeV.12 This brings the lattice error almost down to
that of the present UTA result.

To reduce errors below this level would likely require othermethods, and, in particular,
non-perturbative matching as part of the HQET expansion.

• ξ = fBs

√
BBs/( fB

√
BB). This appears, squared, in the ratio of mixing amplitudes for B and

Bs mesons,
∆MB

∆MBs

=
MB

MBs

λ2[
(1− ρ̄)2+ η̄2] 1

ξ2 . (12)

This ratio is now measured accurately. We have written the result in terms of the Wolfenstein
parameters to emphasize that it directly constrainsρ̄ and η̄ (unlike ∆MBs itself). Present
experimental precision is indicated by the UTA prediction of ξ = 1.24±0.08.

The fact thatξ is a ratio leads to a cancellation of some systematic errors (e.g. scale errors),
but this is counterbalanced by the need to do a chiral extrapolation in the light valence quark
mass.

The current lattice result, 1.23± 0.06, is in complete accord with the UTA result, but is
based on quenched and partially unquenched results. First unquenched results, with all errors
controlled, are expected in 2007 by extending the existing calculations offBs

√
BBs described

above. The expectation is for precision of≈ 3% (±0.04). This will be a very important
step forward, allowing another fully controlled, precision test of the SM. The precision will
improve with time on both the experimental and lattice sides—the lattice error will perhaps
be reduced by a factor of 2 with the MILC2 ensemble.

10Note that, compared to older analyses, it is preferable to use fBs

√
BBs rather thanfB

√
BB, since the former has

smaller chiral extrapolation uncertainties.
11This is obtained as follows. Present errors in the squared quantity f 2

Bs
BBs are 9% (matching), 9% (statistics/fitting),

4% (discretization), 3% (relativistic corrections) and 5%(setting scale). Working at a finer lattice should reduce these,
respectively, to about 8%, 6%, 2%, 3% and 4%, or 11.4% in totalif added in quadrature. The smallest reduction is in
the matching error which is due to the use of one-loop perturbation theory and is≈ α(1/a)2.

12The respective errors are estimated to be 3%, 4.5%, 1%, 3% and2.5% in the squared quantity, or 6.7% in total.
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• (∆Γ/Γ)Bs. The relative width difference in theBs-Bs system provides an another method
with which to test the SM. Present experimental measurements give a first indication of a
signal,(∆Γ/Γ)Bs = 0.35+0.12−0.16 [7], and precision is expected to improve.

Using the operator product and heavy quark expansions, thisratio can be written, at leading
order, in terms of the matrix elements of local four-fermion∆B= 2 operators. The operators
needed include that contributing toBs− B̄s mixing in the SM, and also others with different
Dirac structure [53]. These can all be calculated using the same methods employed in the
calculation of fBs

√
BBs. First unquenched results are now available on the coarse MILC

lattices [13]. The precision attained for all matrix elements is comparable to that infBs

√
BBs.

The next step will be to repeat the calculation on the fine MILClattices so as to control all
errors.

The corresponding ratio forBd mesons is much smaller in the SM and is thus likely to be
hard to measure. The present limit is(∆Γ/Γ)Bd = 0.009±0.037 [7]. A lattice calculation of
the relevant matrix elements should nevertheless be undertaken, and will proceed in parallel
with that for theBs mesons.

4.3 Four-fermion and other operators II: future directions .

Lattice calculations of the following quantities are at an earlier stage than those discussed above,
although in some cases considerable work in the quenched approximation has been done. These
quantities can both provide further tests of the SM and are needed to study the impact of BSM
physics. For these matrix elements it is difficult to predictthe resources needed for a given preci-
sion, and we give only general comments on the difficulty of the calculations. We stress that this
list is not complete, but gives an indication of the breadth of current and future work.

• BSM B− B mixing. Flavor-changing neutral transitions are suppressed in the standard
model, and thus provide a window into BSM physics. In particular, new physics could have
a very small effect on theB decays used to determined the UT angles, while significantly
changing theB mixing amplitudes. In this case the UTA prediction for, say,fB

√
BB would

be in conflict with the SM prediction using lattice matrix elements. In order to constrain
the nature of the new physics in such a scenario, one will needthe matrix elements of four-
fermion operators with all possible Dirac and color structures (not just the LL structure of
the SM). Calculations of the full set of matrix elements requires a straightforward extension
of present work, and indeed three of the matrix elements havebeen already calculated in
Ref. [13]. It is likely that the required accuracy can be obtained with the MILC1 ensemble.

• D− D̄ mixing matrix elements. NeutralD-meson mixing is suppressed in the SM, and
experiments have barely reached the sensitivity required to test the SM prediction. As above,
this makes the mixing a good place to look for BSM physics. In general, the prediction of
the mixing rate in BSM models requires the knowledge of a general set of four-fermion
operators, as in theB system. Such a calculation is a straightfoward extension ofpresent
work, and should be able to attain comparable precision to that envisaged for theB system.
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• BSM K − K̄ mixing matrix elements. Similar comments apply to neutralK mixing as forB
mixing: BSM physics, involving the matrix elements of different four-fermion operator, may
lead to a discrepancy between the experimental and SM value for CP-violation in mixing.
Thus, as for theBandD systems, a complete set of∆S= 2 matrix elements should calculated.
This is a straightforward extension of the calculation ofBK; in fact, the other matrix elements
are less constrained by chiral symmetry and should be easierto calculate precisely. Thus the
DWF1 level should be sufficient.

• CP-conserving part ofA (K → ππ). Calculation of theK± andK0 decay amplitudes from first
principles has turned out to be very challenging. They remain quantities of central interest
because understanding the∆I = 1/2 rule observed in these decays would be a milestone for
lattice calculations.

The difficulties include power-divergent mixing of the four-fermion operators with lower-
dimension operators, the fact that there are two particles in the final state, and the presence
of quark-disconnected diagrams. In addition, the amplitudes are constrained by chiral sym-
metry. In the next few years it is likely that a calculation using K → 0, K → π andK → K̄
amplitudes and leading order, or perhaps next-to-leading order, chiral perturbation theory
will be possible. This method has been successful in quenched studies [54], and should ex-
tend straightforwardly to unquenched lattices. DWF appearessential because of their chiral
symmetry. The drawback is that, particularly in the∆I = 1/2 case, the convergence of the
chiral expansion may be poor.

A direct calculation with the two-pion final state using the method of Lellouh and Lüscher [55]
should also be possible for the∆I = 3/2 channel, based on the success of preliminary cal-
culations [56]. It is not clear, however, whether it will be possible in the next 5 years to
complete a full direct calculation in the∆I = 1/2 channel, to which quark-disconnected
diagrams contribute.

• CP-violating part ofA (K → ππ). These amplitudes are needed to test whether the SM can
explain the measured value ofε′/ε. While similar to the calculation of the CP-conserving
parts of the amplitudes, these calculations are more challenging because it is not possible
to ameliorate power divergences by keeping a dynamical charm quark, and because more
operators contribute, with possible cancellations. Nevertheless, we expect the calculations
to progress only slightly behind those of the CP-conservingpart.

• τ(Λb)/τ(Bd) and other lifetime ratios of hadrons containing b-quarks. These differences
are well measured and so can provide an important validationof our understanding of
heavy-light systems. The difference of the experimental ratios from unity can be system-
atically studied using the heavy quark and operator productexpansions. (A recent review
is Ref. [57].) The matrix elements that are required are those of ∆B = 0 operators between
b-hadrons, and one needs to include both bilinears and four-fermion operators. The latter are
hard to calculate as they involve mixing with lower-dimensional operators, similar to that
occuring inK → ππ amplitudes. Only partial calculations have been done so far, but we
expect these calculation to progress at a similar rate to those forK → ππ amplitudes using
chiral perturbation theory (since the problem of quark-disconnected contractions does not
arise in either case).

• B→ (K∗,ρ,ω)γ amplitudes. These decays are induced in the SM by penguin diagrams con-
taining the top quark. They are potentially sensitive to BSMphysics, which could contribute
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at a level approaching that of the SM. There are by now accurate experimental results for
B→K∗γ, and first observations ofB→ (ρ,ω)γ. Thus it is important to determine the relevant
hadronic matrix elements so as to test the SM.

The required form factor is of the tensor bilinear, e.g. ¯sσµνd for B→ K∗γ. Thus the calcula-
tion is similar to that of theB→ πℓν form factor discussed above, but differs in the important
respect that one must extrapolate toq2 = 0. Because of this, and also from the conclusions
of a recent detailed quenched study [58], we expect this calculation to lag behind that of the
B→ πℓν form factor by a year or more.

• B → Kℓ+ℓ− form factors. The motivation here is similar to that forB → K∗γ—this decay
is sensitive to BSM physics, but the SM “background” must be known accurately. First
measurements of the branching ratio are available, and theq2 dependence of the form-factor
should follow. The lattice calculation is easier than that for B→ K∗γ because all values of
q2 are of interest. On the other hand, both the vector and tensoroperator contribute. First,
preliminary results have been recently presented [59], andwe expect major progress in the
next few years.

• Moving NRQCD. A drawback with present calculations ofB→ π and related semileptonic
form-factors is that the lattice pion cannot have very largemomentum due toa~p errors and
poor signal/noise. This restricts the range inq2 accessible to lattice calculations. One idea
to ameliorate this problem is to make theb-quark, and thusB−meson, move. This approach
is in its infancy, but has considerable promise, as indicated by the first results [60].

• Neutron electric Dipole Moment (dN). Experiments continue to lower the limit on this quan-
tity, and the limit (or value, if it is subsequently observed) can be used to constrain the value
of θQCD in the SM, and also the nature of BSM physics.

Methods to calculate theθQCD-induceddN have been developed and tested in the quenched
approximation [61]. Calculations using chirally symmetric fermions are preferred, and we
expect that a continued effort using DWF will yeild a signal in the next few years.

Supersymmetric extensions of the standard model lead to a potentially larger contribution
to dN resulting from operators of the form ¯qσµνFµνq and q̄σµνGµνq, whereF andG are
respectively the electromagnetic and gluon field strengths[62]. It would thus be interesting
to calculate the nucleon matrix elements of these operators. To date, little work has been
done in this direction, but we expect that calculations withmoderate precision should be
possible in the next few years.

• Proton decay matrix elements. Grand-unified models predictnucleon decay, with modes
such asp→ π0e+. Although to date no such decay has been observed, next generation de-
tectors are under construction. To convert a measurement, or limit, in any given mode into
a constraint on the parameters of the underlying model requires (as for the SM) hadronic
matrix elements. The required matrix elements do not, in general, have quark-disconnected
contributions, so that, in principle, these are straightforward extensions of mature calcu-
lations such as that of nucleon form-factors andBK. The extra challenge compared to a
form-factor calculation is the multi-fermion nature of theoperator, while, compared toBK,
the final-state meson has significant momentum, and the inital state is a nucleon, both of
which increase the noise. On the other hand, less precision is needed to make a significant
impact, since model calculations vary in their predictionsby a factor of∼ 10.
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Quenched calculations have demonstrated that the needed methodology exists [63], and first
unquenched calculations using DWF are beginning. We expectresults with moderate preci-
sion by the DWF1 stage, and good precision at the DWF2 level.

• The nucleon matrix elements〈N|ūu+ d̄d|N〉 and〈N|s̄s|N〉. These are important for BSM
physics because they control the sensitivity of detectors to certain types of dark matter. (They
are also of considerable interest to the hadronic physics community, being the simplest indi-
cators of the strange content of the nucleons.)

These matrix elements are difficult to calculate because they involve quark-disconnected
contractions. Several attempts are underway at present using new methods and, in part,
USQCD computational resources. Results with fairly poor precision (≈ 30%) would be
useful, since present phenomenological estimates vary by afactor of 3. We expect that 30%
precision is attainable in the next few years, although not enough is known to give a more
detailed prediction of precision.

• Hadronic contributions tog−2. There is a continuing uncertainty in the size of the hadronic
“bubble” contribution to the muong−2: data frome+e− production leads to results differing
by about 3-σ from that usingτ decays. It is possible that the lattice can help resolve this
discrepancy, by directly calculating the appropriate integral over the Euclidean vector-vector
correlator [64].

A lattice calculation of the light-by-light contribution has also been considered [65], and
could be developed further with increased resources.

5 Summary

In the last five years lattice QCD calculations have begun to fulfill their promise, with precision
calculations of the simplest quantities in which all errorsare controlled. This has been due to
a combination of increased computer resources and signficant improvements in algorithms and
actions.

The next 5 years will allow precision calculations of many more complicated quantities, pro-
viding several stringent constraints on the SM, and validation using at least two types of lattice
fermions. In addition, if the SM fails, lattice calculations of matrix elements will help map out the
parameters of BSM physics. We stress that the improved precision relies not only on increased
computer resources but also improved theoretical calculations (matching, chiral perturbation the-
ory) and on the further development of numerical methods (particularly for precision calculations
of heavy quark matrix elements).

Acknowledgements:We thank Claude Bernard, and especially Stephen Sharpe for their con-
tributions to this paper.
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A CKM matrix and some notation

The elements of the CKM matrix are as follows,

VCKM =




Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb



 . (13)

In the SM there are three generations andVCKM is unitary. A standard way to implement this, and
at the same time to remove unphysical phases, is the Wolfenstein parameterization in terms of four
real quantitiesλ, A, ρ andη [66] (shown here in its higher-order form [67]):

VCKM =




1− λ2

2 − λ4

8 λ Aλ3(ρ− iη)

−λ+ A2λ5

2 [1−2(ρ+ iη)] 1− λ2

2 + λ4

8 (1+4A2) Aλ2

Aλ3(1− ρ̄− iη̄) −Aλ2+ Aλ4

2 (1−2ρ)− iηAλ4 1− A2λ2

2





+O(λ6) , (14)

where
ρ̄ = ρ(1−λ2/2) and η̄ = η(1−λ2/2) . (15)

CP violation is proportional to the imaginary part ofVCKM, i.e. toη. The least well known param-
eters areρ andη, and it is common to show plots of the constraints in theρ̄− η̄ plane. The position
of ρ̄ andη̄ define the apex of a triangle, as shown in Fig. 3. The angles of this triangle have been
given conventional names, as shown. Note that another naming convention isφ1 = β, φ2 = α and
φ3 = γ.

ρ+i η 1−ρ−i η

βγ

α

C=(0,0) B=(1,0)

A=(ρ,η)

Figure 3: Unitarity triangle, giving definitions of the anglesα, β andγ.
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