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Multigrid linear solvers are optimal ( O( /) operations),
and hence have good scaling potential

4000

Time to Solution

scalable

10
108

Number of Processors (Problem Size)

= Weak scaling — want constant solution time as problem
size grows in proportion to the number of processors
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Multigrid uses a sequence of coarse grids to
accelerate the fine grid solution

smoothing
(relaxation)

Error on the fine grid

The Multigrid
V-cycle
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\ restriction

>
Error approximated on
a smaller coarse grid

prolongation
(interpolation)




The basic multigrid research challenge
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Optimal O(N) multigrid methods don’t exist for some
applications, even in serial

Need to invent methods for these applications
However ...

Some of the classical and most proven techniques used in
multigrid methods don’t parallelize

« (Gauss-Seidel smoothers are inherently sequential

« W-cycles have poor parallel scaling

Parallel computing imposes additional restrictions on
multigrid algorithmic development

Tomorrow’s exascale computers with huge core counts and
small memories just magnifies the challenge
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Parallel Multigrid
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Approach for parallelizing multigrid is straightforward
data decomposition

Level 1 Level 2 Level L
@ @ @
o—o—o o
© o o

= Basic communication pattern is “nearest neighbor”
« Relaxation, interpolation, & Galerkin not hard to implement

= Different neighbor processors on coarse grids

= Many idle processors on coarse grids (100K+ on BG/L)
 Algorithms to take advantage have had limited success
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Straightforward parallelization approach is optimal for
V-cycles on structured grids (5-pt Laplacian example)

Standard communication / computation models

Teomm = o + m3 (communicate m doubles) 1< 1 grids

Teomp = mry (compute m flops)

Time to do relaxation

T~ 4a + 4np + 5n2fy

&2 e
B0 722077 ©

Time to do relaxation in a V(1,0) multigrid cycle

(14+14 - Vda+Q+1/24.)4n8+ (1 + 1/4 4+ ..)5n°
~ (log N)4a + (2)4n8 + (4/3)5n°y

Ty

Q

For achieving optimality in general, the /og term is unavoidable!

More precise: 1V petter ~ Ty + (log P) (48 + 5v)
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Idle processors (cores) are not really a problem

= The idle processor problem seems severe, but standard
parallel V-cycle multigrid performance has optimal order

= What are the limits of what we can achieve by trying to use
idle processors to accelerate convergence?

n points per core

= Best overall speedup assuming PR 7y N
at least one V-cycle is required IR
o0 000000

log/(P) C ) ) . .
maxqyl+——, & 000

09/ (P) @+ @ "

o @ D

= Only makes sense if nnis very small ‘ ! ’

« Example: 3D Laplace on 1M procs: logg(P) < 7
= And this analysis is extremely optimistic!
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Additional comments on parallel multigrid

= W-cycles scale poorly: ;fo
Ty =~ (2'°9YY4a + (log N)4n3 + (2)5n2y
= [exicographical Gauss-Seidel is too sequential  copts Fpts
« Use red/black or multi-color GS WS /7
. Use weighted Jacobi, hybrid Jacobi/GS, L1 N ) WL
« Use C-Frelaxation (Jacobi on C-pts then F-pts)
« Use Polynomial smoothers T
= Parallel smoothers are often less effective BENEE.

= Even if computations were free, doing extra local work
can actually degrade convergence (e.g., block smoothers)

= Recent parallel multigrid papers:

« A Survey of Parallelization Techniques for Multigrid Solvers, Chow, Falgout, Hu, Tuminaro, and Yang, Parallel
Processing For Scientific Computing, Heroux, Raghavan, and Simon, editors, SIAM (2006)

« Multigrid Smoothers for Ultra-Parallel Computing, Baker, Falgout, Kolev, and Yang, SIAM J. Sci. Comput. (to appear)
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Example weak scaling results on Dawn (an IBM BG/P
system at LLNL) in 2011

PFMG-CG on Dawn (40x40x40)

1.8
1.4

o 1.2

o
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o 08 4 AN =¢==problem

g 0. . .

P o6 1%1/ iterations setup
0.4 O solve
0.2

0 T T T T T T

0 20000 40000 60000 80000 100000 120000
Number of Cores (weak scaling)

= Laplacian on a cube; 403 = 64K grid per processor; largest had 8 billion unknowns
=  PFMG is a semicoarsening multigrid solver in hypre
= Constant-coefficient version - 1 trillion unknowns on 131K cores in 83 seconds

= Still room to improve setup implementation (these results already employ the
assumed partition algorithm)
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Multigrid Software
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(Conceptual) linear system interfaces are necessary to

provide “best” solvers and data layouts

Linear System Interfaces

PFMG, ...

l

FAC, ...

structured

l
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composite

Linear Solvers

Split, ...

l

Data Layouts

block-struc

MLI, ...

l

AMG, ...

unstruc

l

CSR
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Why multiple interfaces? The key points

= Provides natural “views” of the linear system

= Eases some of the coding burden for users by
eliminating the need to map to rows/columns

= Provides for more efficient (scalable) linear solvers

= Provides for more effective data storage schemes and
more efficient computational kernels
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14



Currently, hypre supports four system interfaces

Structured-Grid (Struct)
» logically rectangular grids

= Semi-Structured-Grid (SStruct)
* grids that are mostly structured

= Finite Element (FETI)
» unstructured grids with finite elements

= Linear-Algebraic (1J)
» general sparse linear systems \

= More about each next...

Lawrence Livermore National Laboratory
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Structured-Grid System Interface
(Struct)

= Appropriate for scalar applications on structured grids
with a fixed stencil pattern

= Grids are described via a global d-dimensional index
space (singles in 1D, tuples in 2D, and triples in 3D)

= A boxis a collection of cell-centered indices, described
by its “lower” and “upper” corners

7 Index Space
= The scalar grid data is always "<
associated with cell centers o ,
(unlike the more general 5 (15
SStruct interface) e .,*
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Structured-Grid System Interface
(Struct)

= There are four basic steps involved:
» setup the Grid

* setup the Stencil
« setupthe Matrix
 set up the right-hand-side Vector

= Consider the following 2D Laplacian problem

—V2u = f in the domain
u = g on the boundary

Lawrence Livermore National Laboratory

17



Structured-grid finite volume example:

™~

- Standard 5-point finite
volume discretization

_
Process 0 Process 1
Partition and distribute cle ||| T(64

— >

(-3,1)—
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Structured-grid finite volume example:
Setting up the grid on process 0

(24)

X

Create the grid object

|
(-5,1)

HYPRE StructGrid grid;
int ndim = 2;

HYPRE StructGridCreate (MPI_COMM WORLD, ndim, &grid);
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Structured-grid finite volume example:
Setting up the grid on process 0

(24)
|
%
Set grid extents for
first box
{
|
(-3,1)
int ilo0[2] = {-3,1}
int iup0[2] = {-1,2}

HYPRE StructGridSetExtents (grid, ilo0O, iupO);
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Structured-grid finite volume example:
Setting up the grid on process 0

(2,4)
[ ] [ ] t
N I Set grid extents for
B B B A second box
f‘ [ ] [ ] [ ] [ ] [ ]
(-3,7)
int ilol[2] = {0,1};
int iupl[2] = {2,4};

HYPRE StructGridSetExtents(grid, ilol, iupl);
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Structured-grid finite volume example:
Setting up the grid on process 0

(2.4)

4

Assemble the grid

(-3,1)

HYPRE StructGridAssemble (grid);
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Structured-grid finite volume example:

Setting up the stencil (all processes)

(0.0)

®

0

[
stencil entries

(-1,-7) ©

0— (0,0)
1 (-1,0)
2 (1,0)
3 (0-1)
4 (0, 1)

soljowosb

Create the stencil
object

HYPRE_StructStencil stencil;

2;
5;

int ndim
int size

HYPRE StructStencilCreate (ndim, size,

&stencil) ;
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Structured-grid finite volume example:
Setting up the stencil (all processes)

(0.0)

Set stencil entries

S
stencil entries
W N
—
D
soljowosb

(-1,-7)

int entry = 0;
int offset[2] = {0,0};

HYPRE StructStencilSetElement (stencil, entry, offset);

Lawrence Livermore National Laboratory UL-
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Structured-grid finite volume example:
Setting up the stencil (all processes)

(0.0 Qe (0 0)
17— (-1,0)
7 (71,0
3 (0-1)
4— (0 1)

Set stencil entries

‘TL

S
stencil entries
soljowosb

(-1,-7)

int entry = 1;
int offset[2] = {-1,0};

HYPRE StructStencilSetElement (stencil, entry, offset);
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Structured-grid finite volume example:

Setting up the stencil (all processes)

(0.0) ks
kS
c
o 1—(g—2—e o
S
c
G
(-1,-1)

0— (0,0)
R — ‘/-1, f)/)

2+ (1,0)

3= (0-7)
4— (0, 1)

soljowosb

Set stencil entries

int entry = 2;

int offset[2]

= {1,0};

HYPRE StructStencilSetElement (stencil, entry, offset);
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Structured-grid finite volume example:
Setting up the stencil (all processes)

(.0 0« (0,0

1e— (1,0
24— ‘/1’ I')/)
3 (0-1
7— (01

N—

=

soljowosb

Set stencil entries

N

|

S

|

i
stencil entries

N—

(-1,-1) ‘

int entry = 3;
int offset[2] = {0,-1};

HYPRE StructStencilSetElement (stencil, entry, offset);
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Structured-grid finite volume example:

Setting up the stencil (all processes)

! o
(6.0) 4 G:) 0+— (0, 0) (C%
I S 71— (-1,0) o
o—1—(—2— S 2> (1,0 3 . .
. S = (0-1) % Set stencil entries
3 S|4=(01)
(-1,-1) ‘ ®
int entry = 4;
int offset[2] = {0,1};

HYPRE StructStencilSetElement (stencil, entry, offset);
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Structured-grid finite volume example:
Setting up the stencil (all processes)

0,0) T
4
I
o 1—(p—2—e
|
3
(-1,-1) ‘

stencil entries

0« (0,0)
1 (-1,0)
2 (1,0)
3 (0,-1)
4 (0. 1)

soljowosb

That’s it!

There is no assemble
routine
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Structured-grid finite volume example :
Setting up the matrix on process 0

(24)
° ) t
To ° ° ° ° °
(-3,1)
. S4 N . -1 N
S1S0S2| =1|-1 4 -1
. S3 . . -1 .
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HYPRE StructMatrix A;

double wvals[24] = {4, -1, 4, -1, ..};
int nentries = 2;

int entries[2] = {0,3};

HYPRE StructMatrixCreate (MPI_COMM WORLD,
grid, stencil, &A);
HYPRE StructMatrixInitialize(A);

HYPRE StructMatrixSetBoxValues (A,

ilo0, iupO, nentries, entries, vals);
HYPRE StructMatrixSetBoxValues (A,

ilol, iupl, nentries, entries, vals);

/* set boundary conditions */

HYPRE_StructMatrixAssemble(A);

(=
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“

Structured-grid finite volume example :
Setting up the matrix bc's on process 0

T. [ ) [ ) [ )
(-3,1) (2,1)
sS4 [
s1s0s2| =114 -
S3 0
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int ilo[2] = {-3, 1};

int iup[2] = { 2, 1};
double wvals[6] = {0, O, ..};
int nentries = 1;

/* set interior coefficients */

/* implement boundary conditions */

i=3;
HYPRE StructMatrixSetBoxValues (4,
ilo, iup, nentries, &i, vals);

/* complete implementation of bec’s */

(=
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A structured-grid finite volume example :
Setting up the right-hand-side vector on process 0

24)
|
[ J [ J t
f. [ J [ J [ J [ J [ J
(31)
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HYPRE StructVector b;
double wvals[12] = {0, O, ..};

HYPRE StructVectorCreate (MPI_COMM WORLD,
grid, &b);
HYPRE StructVectorInitialize(b)

HYPRE StructVectorSetBoxValues (b,
ilo0O, iupO, wvals);

HYPRE StructVectorSetBoxValues (b,
ilol, iupl, wvals);

HYPRE_StructVectorAssemble(b);
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Symmetric Matrices

= Some solvers support symmetric storage

= Between Create () and Initialize(), call:

HYPRE StructMatrixSetSymmetric(A, 1);

= For best efficiency, only set half of the coefficients

f

~

= This is enough info to recover the full 5-pt stencil
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Semi-Structured-Grid System Interface
(SStruct)

= Allows more general PDE'’s
» Multiple variables (system PDE's)

« Multiple variable types (cell centered, face centered,
vertex centered, ... )

Variables are referenced by the
> ® B o abstract cell-centered index to
the left and down

Lawrence Livermore National Laboratory
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Building different matrix/vector storage formats with
the SStruct interface

= Efficient preconditioners often require specific
matrix/vector storage schemes

= Between Create () and Initialize(), call:
HYPRE SStructMatrixSetObjectType (A, HYPRE PARCSR) ;

= After Assemble (), call:
HYPRE SStructMatrixGetObject (A, &parcsr A);

= Now, use the ParCSR matrix with compatible solvers
such as BoomerAMG (algebraic multigrid)

Lawrence Livermore National Laboratory UL-
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Current solver / preconditioner availability via hypre‘s linear

system interfaces

Data Layouts

Structured <

Semi-structured <

Sparse matrix <

Matrix free <

Solvers

Struct

System Interfaces
SStruct FEI

|J
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Jacobi
SMG
PFMG
Split
SysPFMG
FAC
Maxwell
AMS
BoomerAMG
MLI
ParaSails
Euclid
PILUT
PCG
GMRES
BiCGSTAB
Hybrid

v
v
v

AN NI NN

AN NN N NN YN N U U N N N U N N

AN N N N N N A

AN N N N N N Y NN
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Setup and use of solvers is largely the same (see
Reference Manual for details)

= Create the solver
HYPRE SolverCreate (MPI COMM WORLD, é&solver);

= Set parameters
HYPRE SolverSetTol (solver, 1.0e-00);

= Prepare to solve the system
HYPRE SolverSetup (solver, A, b, X);

= Solve the system
HYPRE SolverSolve (solver, A, b, X);

= Get solution info out via system interface

HYPRE StructVectorGetValues (struct x, index,
values) ;

= Destroy the solver
HYPRE SolverDestroy(solver);

Lawrence Livermore National Laboratory
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Solver example: SMG-PCG

/* define preconditioner (one symmetric V(1,1)-cycle) */
HYPRE StructSMGCreate (MPI_COMM WORLD, &precond) ;

HYPRE StructSMGSetMaxIter (precond, 1);

HYPRE StructSMGSetTol (precond, 0.0);

HYPRE StructSMGSetZeroGuess (precond) ;

HYPRE StructSMGSetNumPreRelax (precond, 1);

HYPRE StructSMGSetNumPostRelax (precond, 1) ;

HYPRE StructPCGCreate (MPI_COMM WORLD, &solver);
HYPRE StructPCGSetTol (solver, 1.0e-06);

/* set preconditioner */
HYPRE StructPCGSetPrecond(solver,
HYPRE StructSMGSolve, HYPRE StructSMGSetup, precond);

HYPRE StructPCGSetup (solver, A, b, x);
HYPRE StructPCGSolve(solver, A, b, x);

Lawrence Livermore National Laboratory
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USQCD / FASTMath Interactions

= Changes to hypre (none of these are difficult to do, but were just

never a priority before)
Extend SStruct beyond 3D
Add support for complex
Implement an adaptive AMG method
Provide support for building PETSc and Trilinos matrices

= PETSc and Trilinos differ from hypre in that they are more like
math toolboxes for parallel computing
Both have linear solvers and multigrid methods
Both provide access to hypre’s BoomerAMG solver
Both have nonlinear solvers and time integration methods

= SUNDIALS is another FASTMath package (with a long long history
at LLNL) that has nonlinear solvers and time integration methods
(in addition to ODE solvers and sensitivity analysis methods)

Lawrence Livermore National Laboratory UL-
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USQCD / FASTMath Interactions — benefits of coupling
to external libraries

= NOT for achieving the absolute best performance of a
partlcular algorithm

An algorithm can always be implemented more efficiently directly in the
code that uses it

« An algorithm can always be tweaked, tuned, and tailored more effectively
directly in the application code

« This is because applications are not hampered by library interfaces and
the need to support other applications

= Given this...

= Excellent performance is highly achievable with libraries

= You benefit directly from other people’s research (possibly
done in the context of a completely different application)

= New algorithms research is often easier to do
= You have more time to focus on science

Lawrence Livermore National Laboratory UL-
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Thank You!

This work performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under
Contract DE-ACS52-07NA27344.
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Adaptive AMG idea: use the method to improve the
method

= Requires no a-priori knowledge of the near null space

= |dea: uncover representatives of slowly-converging
error by applying the “current method” to Ax = 0, then
use these to adapt (improve) the method

= Achi Brandt’'s Bootstrap AMG is an adaptive method

= PCG can be viewed as an adaptive method
Not optimal because it uses a global view
The key is to view representatives locally

= We developed 2 methods: aAMG and aSA (SISC pubs)
Lawrence Livermore National Laboratory UL-
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To build effective interpolation, it is important to
interpret the near null space in a local way

= (2-level) Coarse-grid correction is a projection
(I — P(PTAP)"1PT A)e
= Better to break up near null space into a local basis

2 [ 2 e o o o o o
: L1 1NN
1 1
P=-12 mm) P —=_ 1 1
2 > 2 >
2 2 |
Deflation — not optimal Multigrid — optimal

= Get full approximation property (low-frequency Fourier
modes in this example)

Lawrence Livermore National Laboratory UL-
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SA builds interpolation by first chopping up a global
basis, then smoothing it

= Tentative interpolation is constructed from “aggregates”
(local QR factorization is used to orthonormalize)

~

P Be B

|t

= |

N
~
o
|
~

= Smoothing adds basis overlap and
Improves approximation property

~
|

N
o
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Adaptive smoothed aggregation (aSA) automatically
builds the global basis for SA

= Generate the basis one vector at a time
- Start with relaxation on Av=0 2> u, > aSA(y,)
« Use aSA(y,) on Ai=0 = 1, > aSA(u,, 1)
 Etc., until we have a good method

= Setup is expensive, but is amortized over many RHS'’s

= Published in 2004, highlighted in SIAM Review in 2005

« Brezina, Falgout, MacLachlan, Manteuffel, McCormick, and Ruge,
“Adaptive smoothed aggregation (aSA),” SIAM J. Sci. Comput. (2004)

= Successfully applied to 2D QED

« Brannick, Brezina, Keyes, Livne, Livshits, MacLachlan, Manteuffel,
McCormick, Ruge, and Zikatanov, “Adaptive smoothed aggregation in
lattice QCD,” Springer (2006)

Lawrence Livermore National Laboratory UL-
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Customized aSA takes advantage of the regular
geometry and unitary connections in QCD

= Uses regular geometric blocking (e.g., 49 x 72N, x N.)

= Developed two methods:
- DTD-MG solves the normal equations (HPD)
« D-MG solves original system (not HPD)

= DTD-MG requires more vectors than D-MG, so it is
more expensive

= D-MG can use A=F’, even though D is not Hermitian
« Coarse operator looks like Dirac and retains y; Hermiticity

= D-MG uses Minimum Residual for relaxation

Lawrence Livermore National Laboratory
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4D Wilson-Dirac Results: D-MG shows no critical
slowing down (Time)

2000 | : |
| ®—® CG
| B8 BiCGstab
| 44 MG-GCR
1500 |- I —
|
|
|
2 1000 ] ! _
5 1000 |
|
|
500 |- ' -
|
|
|
¢ ——¢—o— o *r—o—o—o ™ *
1 I 1 | 1 | 1 | 1 | 1
Q31 -0.805 08 -0.795 -0.79 0.785 -0.78

mass

=  Parameters: N=163x32, p=6.0, m_; = -0.8049

crit —

= D-MG Parameters: 44x3x2 blocking, 3 levels, W(2,2,4) cycle, N, = 20, setup run at m
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